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ABSTRACT. Failure of safety-relevant parts is often caused by a superposition of 
normal stress as well as plane and anti-plane shear stress. The loading cases of cracks 
(Mode I, Mode II and Mode III) are generally defined by the stress fields near the crack 
tip. In contrast to pure Mode I-loaded cracks, whose stress near fields are symmetric, 
the stress fields near the crack tip of mixed-mode-crack problems are unsymmetrical. 
Consequently the fracture mechanical treatment of those mixed-mode-loaded cracks is 
more complicated as of pure Mode I-cracks. This paper deals with experimental 
investigations of crack growth under spatial mixed-mode-loading. In the following 
detailed results of fracture and fatigue crack growth experiments and their comparison 
with existing criteria are presented and discussed.  
 
 
INTRODUCTION 
 
In fracture mechanics it is important to understand and analyse the behaviour of mixed-
mode fracture, because materials often contain different defects, e.g. pre-cracks, which 
may have been introduced unintentionally during the manufacturing process. So pre-
cracks can have an arbitrary orientation with respect to a general type of loading, which 
a component of a machine or structure has to carry. 
 Cracks in structures or materials are generally divided into three fracture modes, 
which are shown schematically in Figure 1a. The difference of the three fracture modes 
is the orientation of the local stress filed near the crack tip. A Mode I-loading induces a 
crack-opening; a Mode II-loading leads to an in-plane fracture of the material, which 
causes also a crack kinking and a Mode III-loading leads to an anti-plane fracture of the 
material, which causes a crack twisting (Figure 1b).  
 Local mixed-mode-loading conditions at cracks occur in combination of the three 
basic fracture modes. Thereby the cracks grow in a way, that not only an opening, but 
also a planar deflection and/or a non-planar twisting of the two crack surfaces can be 
found.  
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Figure 1. a) Basic fracture modes 
 b) Principle orientation of the fracture surfaces for basic fracture modes 

 
 Therefore the stress field near the crack front is not only defined by the stress 
intensity factor KI, but also by KII and KIII respectively the comparative stress intensity 
factor KV, which can be determined by [1]:  
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 According to this the fatigue crack growth is governed by the cyclic stress intensity 
factors ∆KI, ∆KII and ∆KIII respectively the cyclic comparative stress intensity factor 
∆KV, which can be derived from Eq. 1: 
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 A crack under spatial-mixed-mode loading is propagable, if ∆KV exceeds the 
threshold value ∆Kth for Mode I. Unstable crack growth occurs, if KV (see Eq. 1) 
reaches the fracture toughness value KIC. Stable and controlled crack growth lies 
between these two critical values. The complete curves are illustrated in a  
KI-KII-KIII-diagram (Figure 2a).  
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Figure 2. a) K
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-diagram with the range of fatigue crack growth 

b) Definition of the cyclic stress intensity factor ∆K and R-ratio 

 
 There are numerous hypotheses and concepts for plane- and spatial-mixed-mode 
problems, which will be described in the following.  
 
 
EXISTING 2D- AND 3D-MIXED-MODE CRITERIA 
 
For the prediction of the growth of mixed-mode-loaded cracks the determination of 
comparative stress intensity factors is essential. The transformation of Mode I-, 
Mode II- and Mode III-stress intensity factor, e. g. by using Eq. 2, into only one cyclic 
comparative stress intensity factor ∆KV makes it possible to compare this value with the 
cyclic fracture toughness value ∆KIC = (1-R) KIC.  
 Consequently, conclusions could be drawn on crack growth. Furthermore the crack 
growth direction is required for a complete description of crack growth behaviour. For 
this purpose some existing hypotheses are mentioned below. All of these hypotheses are 
based on the near-field-solutions for the stress distribution at the crack front:  
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2D-Mixed-Mode criteria 
For plane-mixed-mode problems in the literature there are many hypotheses [2]. Here in 
this paper only a few of them are presented.  
 
Criterion by Erdogan and Sih 
The crack growth predictions of the maximum tangential stress criterion by Erdogan 
and Sih [3] are based on the tangential stress σφ, Eq. 3b. According to this criterion, the 
crack growth follows the direction of φ = φ0 perpendicular to the maximum tangential 
stress σφ,max. The crack growth starts radial from the crack tip and becomes unstable as 
soon as σφ,max exceeds the material limit value σφ,C – or – if the comparative stress 
intensity factor KV, resulting from σφ,max, exceeds the fracture toughness KIC [2]. The 
crack deflection angle φ0 can be obtained by: 
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 Finally the following equation for the crack deflection angle φ0 results: 
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 The fracture limit surface is given by the maximum comparative stress intensity 
fractor: 
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2D-criterion by Richard 
This criterion was empirically developed by Richard [2, 4]. Here the comparative stress 
intensity factor KV is defined by 
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and depends on the stress intensity factors KI and KII. It is noticeable that unstable crack 
growth occurs, if KV exceeds the fracture toughness KIC. This criterion has an excellent 
approximation of the fracture limit surface of the maximum tangential stress criterion by 
Erdogan and Sih. The crack kinking angle φ0 can be determined by  
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whereby for KII > 0 the kinking angle ϕ0 < 0 and vice versa, while always KI > 0. 
 There are some more criteria, e. g. criterion by Nuismer [5] or criterion by Amestoy 
[6], which are based on the energy release rate and describes the crack growth 
behaviour for 2D-mixed-mode-loading situations.  
 
3D-Mixed-Mode criteria 
Spatial-mixed-mode problems are characterised by the superposition of Mode I-, 
Mode II- and Mode III-loading. Therefore the stress intensity factors KI, KII and KIII 
within the scope of linear-elastic fracture mechanics are of importance on the one hand 
for the estimation of the risk of fracture and on the other hand of the process of the 
stable crack propagation in a structure.  
 For non-planar-mixed-mode problems only a few fracture criteria do exist. In the 
following sections the relevant ones will be described. 
 
Criterion by Sih 
The probably best known criterion for the description of three-dimensional-mixed-mode 
crack problems is the criterion of strain energy density by Sih [7, 8]. It is based on the 
near-field-equations (Eq. 3a-3f) and on the elastic energy density for spatial-mixed-
mode problems. Beginning from the crack tip the crack grows radial in the direction of 
the minimal energy density factor Smin and becomes unstable as soon as Smin exceeds a 
critical material value SC [7, 8]. 
 
Criterion by Pook 
Another criterion for spatial crack growth was proposed by Pook [9-11]. In order to 
determine the crack growth direction and a comparative stress intensity factor, first of 
all he calculates a plane comparative stress intensity factor KV,I,II with the following 
equation: 
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 Afterwards he determines by using the KV,I,II and KIII a spatial comparative stress 
intensity factor KV,I,II,III  
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 In order to be able to make conclusions about the occurence of unstable crack growth 
the KV,I,II,III can be compared with the fracture toughness KIC. The crack kinking angle 
ϕ0 can be obtained by: 
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and the crack twisting angle ψ0 by: 
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 The crack deflection angles (see Figure 1b) results in a range of [-70.5°,+70.5°] for 
ϕ0 and [-45°,+45°] for ψ0. 
 
Criterion by Schöllmann et al. 
The 1σ ′ -criterion by Schöllmann et al. [12, 13] is based on the assumption that crack 
growth develops perpendicularly to the direction of 1σ ′  (Figure 3). For the 
determination of this special maximum principal stress the near-field equations  
(Eq. 3a-3f) are used.  
 

 
Figure 3. Cylindrical coordinate system and stress components at a 3D-crack front 
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 1σ ′  depends on the near-field-stresses σφ, σz and τφz as follows: 
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 According to this criterion the crack kinking angle ϕ0 occurs as soon as 1σ ′  reaches 
its maximum value. Therefor Eq. 14 has to fulfil the following conditions: 
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 After substituting the near-field equations (Eq. 3a-3f) into Eq. 14, considering σz is 
zero and differentiating partially with respect to ϕ0, the following equation can be found 
for ϕ0: 
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 In order to understand the complete crack growth behaviour for spatial-mixed-mode 
case a specification of the twisting angle ψ0 is necessary. The twisting angle is defined 
by the direction of 1σ ′  and can be formulated as follows: 
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 A comparative stress intensity factor KV,max can be established out of Eq. 14 by 
using: 
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with φ = φ0 the KV,max results from: 
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 For completeness another one criterion has to be mentioned here. The MTU-criterion 
by Dhondt [14] is very similar to the criterion by Schöllmann et al., because it has the 
same assumptions.  
 
3D-criterion by RICHARD 
The basis for this criterion is the following approach: 
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 With u = 1 and v = w = 2 a cyclic comparative stress intensity factor can be defined 
in order to reasonably describe fatigue crack growth: 
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 Fatigue crack growth starts, if ∆KV exceeds the threshold value of fatigue crack 
growth ∆Kth. Crack growth becomes unstable, if the fracture toughness KIC is reached. 
This criterion by Richard is a good approximation to the criterion by Schöllmann et al. 
For the determination of the kinking angle φ0 and the twisting angle ψ0 simple 
approximation functions are given by [1] 
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 For KI ≥ 0 and KII < 0 is φ0 > 0 and for KII > 0 is φ0 < 0. Furthermore, for KI ≥ 0 and 
KIII < 0 is ψ0 > 0 and for KIII > 0 is ψ0 < 0.  
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EXPERIMENTAL INVESTIGATIONS ON 2D-MIXED-MODE-CRACKS 
 
In the past several specimen types for 2D-mixed-mode 
problems have been proposed [2, 15]. Among others, the 
CTS-specimen together with its loading device [16, 17] has 
proven its applicability. Therefore only the CTS-specimen 
will be discussed in the following.  
 The loading device (Figure 4) allows applying pure 
Mode I-, pure Mode II- as well as almost every 2D-mixed-
mode-loading combination to the CTS-specimen by using 
just a uniaxial tension testing machine. For the purpose of 
varying the mixed-mode-loading only the loading angle α 
has to be changed.  
 Depending on the mixed-mode-portion the crack grows 
into a new direction, i. e. the crack kinks under a specific 
angle φ0 (see Eq. 7). Some fractured CTS-specimens with an 
increasing KII/KI-portion are shown in [18].  
 
 
EXPERIMENTAL INVESTIGATIONS ON 3D-MIXED-MODE-CRACKS 
 
For experimental investigations of three-dimensional crack growth and fatigue for 
spatial-mixed-mode loading some types of specimens are available [2, 3, 19]. But in 
fact only view of these specimens covers the full range of all basic fracture modes or all 
combinations thereof.  
 Due to their importance for the researches of mixed-mode-loaded crack problems, in 
this paper the AFM-specimen and the CTSR-specimen with their corresponding loading 
devices (cf. Figs. 5 and 7) are described in more detail.  
 
AFM (All-Fracture-Mode)-specimen and loading device 

Figure 4. Loading device and
 the adjustment of 
 the loading angle α 

The AFM-specimen, developed by Richard, enables the
investigation of spatial-mixed-mode problems in arbitrary
combination by using a simple uniaxial testing machine [20].  

Some experiments under static load [21] had proven the
applicability of this loading device. Due to its high weight and
high deformation only low test frequency for fatigue is
possible. Consequently this fact leads to very high duration of
experiments. 

Referring to this concept by Richard a new specimen, so-
called CTSR-specimen, with the corresponding loading device
was developed, which is discussed in more detail below. 

 

Figure 5. Loading device for
 AFM-specimen 
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CTSR (Compact-Tension-Shear-Rotation)-specimen and loading device 
In the last few years an advanced AFM-specimen,  
so-called CTSR (Compact Tension Shear Rotation) 
-specimen (Figure 6) for cycling loading was 
developed [22]. The appropriate loading device  
is shown in Figure 7. This new specimen and 
corresponding loading device enables any 
combination of mixed-mode loading including 
pure Mode I-, pure Mode II- and pure Mode III-
loading. Because of the holes, which are installed 
circularly in 15°-steps at a bolt circle around the 
specimen, it is possible to generate any ratio of 
Mode I to Mode II/Mode III (Figure 7).  
 By rotating the so-called turret inside the 
loading device the ratio of Mode II- or Mode III-
load is set (Figure 8).  

 
Figure 7. Loading device: Adjustment of the ratio of Mode I to Mode II/Mode III 

 

 
Figure 8. Loading device: Adjustment of Mode II- and Mode III- ratio 

Figure 6. CTSR-specimen 
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 The angles α and γ can be adjusted by 15°-steps in the range from 0° to 90°. 
Whereby the load line of action always passes through the centre of the specimen.  
 In the following section results of fracture and fatigue crack growth experiments and 
also comparisons with existing criteria are shown and discussed. 
 
 
RESULTS OF 3D-MIXED-MODE EXPERIMENTS ON CTSR-SPECIMENS 
 
First of all experiments on PMMA have been performed, in order to determine the 
fracture limit surface. Another series of experiments were done, in order to determine 
the threshold-value surface (cf. Fig. 2a) for the aluminium alloy Al7075-T651. Some 
resulting fractured surfaces of fatigue experiments are presented in Figure 9.  
 

Figure 9. Mode I-, Mode II- and Mode III-fractured surface of Al7075-T651 (form left to right) 

 
 The direction of crack propagation changes depending on the loading situation  
(look at Fig. 1b). At a Mode I-loading the crack grows in the direction of the initial 
crack front; at a Mode II-loading a clear crack kinking is noticed and Mode III-loading 
leads to crack twisting and creates facets. 
 
Comparison of the results with existing criteria 
The points in Figure 10 are measured on CTSR-specimens (see Figure 6) the fracture 
toughness values for PMMA. By comparison with the 3D-criterion by Richard a 
significant variation of the fracture toughness values determined by Mode III-loading is 
noticeable. The resulting facture toughness values for pure Mode III-loading KIIIC are 
around factor 2.7 above the hypotheses by Richard. A comparison with other criteria 
mentioned in this paper show the same results.  
 Furthermore it is visible, that the less the Mode III-ratio the better the congruence 
with the predictions of the hypotheses. As soon as there is no Mode III-loading the 
measured values are very close by the criterion by Richard. All in this paper 
investigated criteria are conservative, so they could be used for engineering 
calculations. 
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Figure 10. Comparison of experimental results with 3D-criterion by Richard 

 
 In addition, the comparison of measured threshold values of Al7075-T651 with the 
threshold value surface of the criterion by Richard also depicts a significant variation of 
threshold values for Mode III-loading ∆KIII,th (Figure 11). Here the resulting threshold 
values for pure Mode III-loading ∆KIII,th are around factor 2.2 above the hypotheses by 
Richard (see Eq. 20). The threshold values for all in this paper investigated criterions 
are on the safe side, so they could be used for fracture mechanical calculations.  
 

Figure 11. Comparison of threshold value results with 3D-criterion by Richard 

 
 Moreover, the crack kinking and crack twisting were investigated. Therefor the 
fractured surfaces of the specimens (Figure 12a) were digitalised by using an optical 
3D-scanner. The result of such a digitalisation is presented in Figure 12b.  

 

 

230



a) b)

Figure 12. a) Real fractured surface 
b) Digitalised fractured surface 

 
a) b)

    
c) d)

Figure 13. a) Comparison of kinking angle with criterion by Richard 
b) Comparison of kinking angle with criterion by Pook 
c) Comparison of twisting angle with criterion by Richard 
d) Comparison of twisting angle with criterion by Pook 

 
 With a CAD-software the data from the optical 3D-scanner further were processed 
and an approximation area near the initial crack front was defined in order to determine 
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kinking and twisting angles φ0 and ψ0. Then the angle values were compared with the 
criteria to prove the reliability of their predictions.  
 The comparison between measured crack deflection angles and the predictions of 
criteria (look at Figure 13) exhibits that measured crack kinking angle φ0 coincides very 
well with the predictions of the criterion by Richard (Figure 13a) as well as of criterion 
by Schöllmann et al. and criterion by Dhondt. The average deviation for the crack 
kinking angle φ0 is ca. 7°. Maximum deviation can be found at pure Mode III-loading.  
 The criterion by Pook disregards that fact. Consequently the real kinking angle 
deviates considerably from its predictions (Figure 13b).  
 A similar result exhibits the evaluation of the crack twisting angle ψ0. The results 
show a very well coincidence of the real crack twisting angle ψ0 with the predictions of 
the criterion by Richard as well as of the criterion by Schöllmann et al., as mentioned 
above (Figure 13c). The greatest deviations from the real twisting angle one finds at the 
predictions of the criteria by Pook (Figure 13d) and by Dhondt. 
 
 
CONCLUSION 
 
In conclusion, it can be said that, the new developed CTSR-specimen, which was 
presented here, is suitable for experimental investigations on spatial-mixed-mode 
loading.  
 On consideration of fatigue tests the results show obviously higher fracture 
toughness values and threshold values for high Mode III-loading ratios than by existing 
criteria theoretically expected. Predictions of all criteria are on the conservative side. 
Here the criteria by Richard and by Schöllmann et al. indicate the most exactly 
predictions.  
 Good predictions regarding both crack deflection angles are predicted by the criteria 
by Richard, by Schöllmann et al. and also by Dhondt. Due to their good exactness of 
predictions of the fatigue crack growth behaviour, these criteria should be implemented 
in numerical calculation programs.  
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