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ABSTRACT. Crack growth in non-linear quasi-brittle materials is addressed by a new 
approach. This approach is consistent with the Linear Elastic Fracture Mechanics 
Framework; the velocity field around the crack tip is represented by a sum of terms, 
each term being defined as the product of a shape function and an intensity factor. So as 
to enrich the LEFM kinematics, additional shape functions are introduced to account 
for the non-linear behaviour of the material. To do so, the discrete element method is 
used to compute the velocity field around a crack tip for nominal stress intensity factors 
histories, using boundary conditions extracted from finite element calculations. 
Preliminary analyses are executed to construct a basis of shape functions for mode I 
and mode II, including linear and non-linear terms, using a proper orthogonal 
decomposition. Once this is done, the velocity field computed using the discrete element 
method for various mixed mode loading schemes can be projected onto this basis of 
shape functions, which allows condensing the evolution of the damage field around the 
crack tip into the evolution law of the “non-linear” intensity factors associated with 
each mode.  
 
INTRODUCTION 
Being able to accurately predict the leakage rate through a cracked or damaged concrete 
shell remains a major challenge to nuclear safety. It requires accounting explicitely for 
opening and growth of through thickness cracks. The linear elastic fracture mechanics 
framework should be the best suited for this type of problems. However the underlying 
assumption of linear elasticity makes it innapropriate to model the permeability of 
concrete shells.  

As a matter of fact, quasi-brittle materials such as mortar, concrete or rocks display a 
non-linear quasi-brittle behaviour. The crack tip process zone consists in a high number 
of micro-cracks, among which some coalesce to promote macroscopic crack growth 
while others, that remain unconnected with the macro-crack, produce a shielding effect 
to the macro-crack and an overall non-linear behaviour of the cracked structure.  

The discrete element method (DEM) is attractive to deal with problems involving 
damage and micro-cracking in heterogeneous quasi-brittle materials. The material is 
modelled as a Voronoi tessellation of particles and a set of connections between them, 
modelled as cohesive forces. The maximum allowable strain in each connection is 
statistically distributed so as to represent the heterogeneity of the material. The process 
of micro-cracking is then described by the breaking of connections between particles 
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and generates naturally the appropriate complexity (damage localization, cracks pattern 
formation, etc.). 

Nevertheless, modelling the behavior of a nuclear core concrete shell by the DEM 
remains up to now out of reach. The aim of this study is thus to enrich the kinematics of 
the crack tip region by adding additional fields stemming from DEM simulations. As in 
LEFM, these fields are expressed as the product of an intensity factor, handled as a 
degree of freedom, and of a shape function defined a priori and characterizing the 
geometry of the velocity field in the process zone. In I+II mixed mode conditions, the 
evolutions of 4 intensity factors, a linear and a non-linear ones for each mode, thus fully 
characterize the kinematics of the crack tip region. The discrete element method is used 
to compute velocity field evolutions for various mixed mode loading histories, which 
are then post-treated so as to reduce them into evolutions of four intensity factors.  
 
DISCRETE MODEL 
In the considered discrete model ([1]), the material is described as a Voronoï particle 
assembly, representative of the material heterogeneity (Fig. 1(a)). Basically two types of 
interactions are considered, cohesive forces and contact forces, however our study 
focuses only on tension loading, so we’ll consider only cohesive forces. 
 

 
 

Figure 1. Discrete model (a) and representation of Voronoï cells and their connections (b).  
 

Each particle possess 3 degrees of freedom (2 in translations and 1 in rotation), and 
the interaction between two particles is represented by a 6 x 6 local stiffness matrix. 
Following Schlangen and Garboczi ([4]), Van Mier et al. ([5]), an Euler-Bernoulli beam 
matrix is used in the model to connect each pair of neighboring particles i and j (Fig.  
1(b)). 

Considering an ideally elastic-brittle behavior for the beams renders damage 
evolution. The breaking criterion for a connection lij between two particles i and j, is 
function of the strain of the beam ! used as a connector and of the rotation values !i and 
!j of particles i and j: 
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 !cr and "cr are two material parameters, the first one controlling essentially the tensile 
behavior of the discrete model, and the second its compressive behavior. These two 
parameters are statistically distributed so as to account for the heterogeneity of the 
material 
 
BOUNDARY CONDITIONS 
The model is constructed so as to be driven in nominal stress intensity factor boundary 
conditions. For this purpose, we use both FE and DEM analyses. In both cases, the 
region of interest (ROI) is a 12 mm x 12 mm square section, having the crack tip in its 
centre at the beginning of each computation. The first step of the analysis is performed 
using the finite element method and a linear elastic material behaviour. The FE model is 
a 5 m x 5 m square plate with a centered crack with a length 2a = 100 mm, the FE mesh 
is refined within the ROI around the crack tip. The displacement of the nodes located 
along the faces of the ROI is extracted from the FE results of simulations with either  or  
and is then assigned as reference boundary conditions for DEM analyses. The discrete 
element model consists of a 12 mm x 12 mm square ROI. The discrete element mesh 
was constructed so as to display a symmetry plane along the crack plane. 
 
CRACK TIP FIELDS IN MIXED MODE I + II LOADING CONDITIONS 
Assumptions 
The DEM model can hence be driven in terms of nominal stress intensity factors 
histories. The velocity field evolutions, computed using the DEM, are then post-treated 
to extract their main features. For this purpose, the following hypotheses are considered. 
First, to be consistent with the LEFM framework, the crack is modelled by a local plane 
and front. This assumption allows defining a local axis system RT and partitioning the 
velocity field into modes. The mode I consists of the symmetric part of the velocity 
field v(P,t) with respect to the local axis system RT attached to the crack tip and the 
mode II, to its anti-symmetric part. In addition, with respect to RT, the geometry of the 
crack is assumed to remain locally unchanged by changes in the scales, implying that 
the crack tip fields can be expressed as the product of an angular distribution and of a 
scale function. The second main hypothesis is thus to approximate each part of the crack 
tip velocity field as the product of a shape function and of an intensity factor. For each 
fracture mode, a “linear elastic” shape function is first introduced to be consistent with 
the LEFM framework. Then an additional shape function is constructed to carry the 
non-linear behavior of the crack tip process zone induced by the presence of micro-
cracks. 
 
Construction of linear elastic shape funtions 
The linear elastic reference fields 

! 

ue
I  and 

! 

ue
II  are first obtained from elastic simulations 

using the discrete model. In order to model a linear elastic response with the discrete 
element model, the connections between particles are all considered as unbreakable. 
The linear elastic reference field for each mode is then obtained after partitioning the 
displacement field computed by DEM analysis into mode I and mode II components. 
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Construction of additional shape functions 
To obtain the two additional fields uc

I and uc
II, the discrete element model is loaded 

either in mode I or in mode II. The connections between particles are now allowed to 
break. The solution v(P,t) of a monotonic loading case is post-treated as follows. First, 
the DEM velocity field v(P,t) is projected onto the linear elastic reference fields. The 
projections
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˜ ˙ K II ) of v(P,t) onto 
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II ), can slightly differ from the 

nominal stress intensity factor loading rate 
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˙ K I
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˙ K II
"). As a matter of fact, two 

types of stresses contribute to the “LEFM” response of the cracked structure, the 
applied stress field featured by 

! 

K I
" ! and the internal stress field that arises from the 

shielding effect of the field of micro-cracks within the process zone. 
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The residue is then calculated as follows: 
 

! 

v res (P,t) = v(P,t)" ˜ ˙ K I (t)ue
I (P)      (3)  

 
This residue can then be partitionned using the Karhunen-Loeve transform [3] into a 
sum of a product of spatial fields, mutually orthogonal, and their intensity factors. We 
only keep the first term for each mode. Assuming that the two linear elastic reference 
fields (

! 

ue
I  and 

! 

ue
II ) and the two additional fields (

! 

uc
I  and 

! 

uc
II ) that were constructed 

using either linear elastic or non-linear conditions for monotonic mode I or mode II 
loading phases can be used to represent any complex mixed mode loading scheme, we 
can then approximate the crack tip velocity field as follows: 
 

! 

v(P,t) " ˜ v (P,t) = ˜ ˙ K I (t)ue
I (P) + ˜ ˙ K II (t)ue

II (P) + ˙ # I (t)uc
I (P) + ˙ # II (t)uc

II (P)     (4) 
 
This assumption is valid only if the process zone is constrained inside an elastic bulk 
that controls and limits the movement inside the process zone. The Karhunen-Loeve 
transform was selected because it uses the self-correlation matrix of the movement. In 
other words, it partitions the movement inside the process zone into uncorrelated or 
independent movements. As a consequence, the intensity factors represent the 
independent degrees of freedom of the process zone. 

With this hypothesis, the evolution of the four intensity factors (

! 

K I ,

! 

K II ,

! 

" I ,

! 

" II ) of 
the four reference fields (

! 

ue
I , 

! 

ue
II , 

! 

uc
I , 

! 

uc
II ) is a condensed measure of the behavior of 

the process zone. To verify the quality and the suitability of that hypothesis, the error 
associated to the approximation of the velocity field is calculated at each time step. 
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Extraction of the intensity factors 
Having at our disposal an orthogonal basis of spatial reference fields (

! 

ue
I , 

! 

ue
II , 

! 

uc
I , 

! 

uc
II ), 

defined a priori for a given material, makes it possible to project the velocity field 
v(P,t), obtained for any loading sequence, onto this basis. 

First the rate of the mode I (resp. mode II) linear-elastic intensity factor 
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K I  (resp. 

! 

K II ) is extracted as shown is Eq. 5. This rate is given in MPa"m.s-1 and is very close to 
the rate of the nominal applied stress intensity factor 
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as follows to extract the rate of the mode I (resp. mode II) non-linear intensity factor 
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Error calculation 
Once the four intensity factirs are extracted, an approximation of the computed velocity 
field v(P,t) is provided in Eq. 4. It is useful to define to errors associated with this 
approximation:  

- the error C1(t), associated with a linear elastic representation of the velocity field 
- the error C2(t), associated with a non-linear representation of the velocity field. 

 
The error C1(t) and the relative error C1R(t) are calculated as follows :  
 

! 

C1 (t) = v(P,t) " ˜ ˙ K I (t)u I
e (P)" ˜ ˙ K II (t)u II

e (P)( )
2

dv
D# , C1R (t) = C1 (t) (v(P,t))2 dv

D#   (6) 

 
The error C2(t) and the relative error C2R(t) are calculated as follows :  
 

! 

C 2 (t) = v(P,t) " ˜ v (P,t)( )2 dv
D# , C 2R (t) = C 2 (t) (v(P,t))2 dv

D#   (7) 
The errors C2 and C2R indicate when this approach is valid and the difference between 
C1R and C2R indicates whether or not a non-linear approach is really needed, or in other 
word, when the process zone behavior can be considered as having a linear-elastic 
behavior or not. 
 
ADDITIONAL SHAPE FUNCTIONS 
R-dependency 
To illustrate this method (Fig. 2), the additional fields for each mode, obtained by a 
proper orthogonal decomposition, were post-treated a second time so as to partition 
them into a function of the distance to the crack tip r and of the angular location !. The 
r-dependency is the same for the two modes and displays an exponential decay. 
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Figure 2: Comparison of r-dependency of mode I and II components. 

!-dependency 
The !-shape functions g(!) possess two components (a radial and a hook ones). For the 
sake of simplicity, it was chosen to represent it using the deformation of an initial circle 
induced by either the mode I or the mode II !-shape function, respectively Fig. 3(a) and 
Fig. 3(b). In both cases, there is a discontinuity of the velocity field along the crack 
plane, the mode I component being symmetric and the mode II antisymmetric. 

  

(a)     (b) 
Figure 3: Dependency in ! of the complementary fields in mode I (a) and II (b). 

 
The discontinuity of the opening displacement at the circle ends (!=-! and !=!) in 
mode I, analogous to a CTOD, is used to make the mode I additional field 
dimensionless. In mode II, the sliding displacement discontinuity, analogous to a CTSD, 
is used to make the mode II additional field dimensionless.  
 
INTENSITY FACTORS 
 
Computations have then been made for mode I and II loading cycles with cyclically 
increasing amplitudes. For each time increment, the velocity field computed using the 
discrete element method is projected onto the basis of reference fields that was 
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constructed using previous calculations. In Fig. 4 (a) and (b), the non-linear intensity 
factor 

! 

" I  (resp. 

! 

" II ) is plotted against the nominal applied stress intensity factor 

! 

K I
"  

(resp. 

! 

K II
"). It is clear in this graph that 

! 

" I  (resp. 

! 

" II ) does not represent directly the 
damage of the process zone. In fact, 

! 

" I  (resp. 

! 

" II ) represent the contribution of micro-
cracks to the velocity field in the process zone. When the process zone is loaded or 
unloaded below the maximum value of 

! 

K I
"  (resp. 

! 

K II
") reached previously, there is no 

longer break of connections. In this case, we first observe that the 

! 

K I
"-

! 

" I  curve is a 
straight line and that its slope is constant. We also observe that the two errors C1R and 
C2R are both very small. During such loading and unloading phases existing micro-
cracks do cyclically close and open, but there is no creation of new micro-cracks. 
 

 
(a)      (b)  

Figure 4: Evolution of non-linear intensity factors with the stress intensity factor in 
mode I (a), and in mode II  (b). 

 
However, when new micro-cracks are created, i.e. when connections are broken, the 

slope of the 

! 

K I
"-

! 

" I  curve changes. In addition, we observe that both C1R and the 
difference between C1R and C2R increase significantly during loading phases for which 
connections are broken (in any cases, it is found that C2R is small, well below 0.1%, 
indicating that the approach is valid). 

The damage of the process zone is related to the slope of the 

! 

K I
"-

! 

" I curve during 
loading phases for which no micro-cracks are created. The evolution law of damage is 
given by the variation of that slope during loading. 

In this first analysis we did not try to load the model above 0.2 MPa.m1/2, however, 
we observed that the shielding effect of micro-cracks 

! 

˜ K I

! 

K I
"

 is progressively 
decreasing when the micro-cracks density is increasing.  
Loadings sequences at different mode mixity were simulated using the discrete elements 
model. The evolutions of the intensity factors are shown in Fig.5. Although loading 
directions were clearly different in terms of 

! 

K I
"  and 

! 

K II
"  as shown in Fig. 5(a), it 

appears there are only two main flow direction in terms of ( , ) (Fig. 5(b)). 
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(a)      (b) 

Figure 5: Loading directions in 

! 

K I
"  and 

! 

K II
"

 diagram for different mode mixity factors 
(a) and evolutions of complementary intensity factors corresponding (b). 

 
CONCLUSIONS 
 
An enriched kinematic is proposed to feature the crack tip velocity field in quasi-brittle 
materials. A basis of reference fields was constructed once and for all for a given 
material. It contains a linear-elastic and non-linear field for each mode. During mixed-
mode loading schemes, the velocity field in the process zone computed using the 
discrete element method, is projected onto this basis so as to extract their intensity 
factors. The behavior of the crack tip region can then be analyzed through the evolution 
of the four intensity factors of the four reference fields. For each mode, the intensity 
factor of the elastic-linear reference field is extremely close to the nominal applied 
stress intensity factor. The intensity factors of the non-linear reference fields represent 
the overall contribution of micro-cracks in the process zone to the velocity field for each 
mode. Evolution laws can be generated using the DEM, that will be used to construct a 
non-linear constitutive model for the crack tip process zone. 
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