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ABSTRACT. If a crack approaches the interface between two dissimilar anisotropic
materials various scenarios can happen. The question whether the crack will reach
or even penetrate the interface depends on the mismatch of elastic moduli in the two
materials. This contribution is devoted to the question whether a crack will reach the
interface when the distance of the crack tip and the interface are small compared to
the distance of the crack tip to the outer boundary. The energy release is calculated
using the method of matched asymptotic expansions. Other than for the calculation
of the ERR in homogeneous materials here the reference problem is the situation
when the crack has already reached the interface.

INTRODUCTION

The application of anisotropic composite materials in modern engineering leads to
new challenges in fracture mechanics. If a crack approaches an interface between
two different anisotropic materials experiments show that the crack can stay stuck
at the interface, it may pass through the interface or be deflected.

In this contribution we consider a straight crack starting from the boundary in
a body composed of two dissimilar anisotropic brittle materials as indicated in the
figures. In particular we use energy arguments to address the following problem:
Suppose the the crack tip is located in a small distance Aa from the interface, is it
possible that the crack propagates and reaches the interface? In order to do so we
must calculate the energy release rate if the crack tip moves from the point (—Aa, 0)
to the point (0,0). To be more specific, we consider a plane elasticity problem: Let
Q be a domain in the plane R? with boundary I, the closure Q represents a body
composed of two materials with related Hooke tensors A! and A2, respectively.
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The interface Z is located on the xo-axis, while the crack =_a, is located on the z;
axis:
E_ae = {(21,0) € Q21 < —Aa},

in particular =, corresponds to the crack with tip at the interface Z. Let u=2® be
the displacement field solving the elasticity problem,

—V-0=0 inQ_Aa:Q\E—AlM

012 =092=0 on=_pq+, 0-n=p onl,

(1)
where n denotes the external unit normal vector. We have Hooke’s law

Al z, <0
o=A(z)-e, A(;@:{A2 x1>0 (2)

Furthermore, we have to assume that the external loading p is self balanced, that
is fr pi=0,1=1,2, fr P12y — pex1ds = 0. In addition we require the continuity of
the displacement fields and normal stresses at the interface Z: on the interface Z:

U(0+, .’Eg) = u(()_, .TQ), 0'1'1(0_&_7 LUQ) = 0'1'1(0_, x2>. (3)

The associated potential energy U can be considered as a function of the distance
Aa (we use the sum convention):

1
U(—ACL) = 5/9 0i5€i5 — /ijujds.
—Aa

In order to decide whether the crack can reach and eventually penetrate the interface,
the following condition must be fulfilled for all (small) values of Aa:

—AU =U(-Aa) — U(0) > 2yAa, (4)

where 27, Aa represents the energy to produce the new surface, that is 27, is the
critical energy release rate in the first material. Problems of this type were studied
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for isotropic materials for example in [1], [2].

POWER LAW SOLUTIONS AND WEIGHT FUNCTIONS

Usually the energy release rate is expressed in terms of the stress intensity factors
related to the starting point of the crack growth which would be the point (—Aa, 0)
here. However, if Aa is small it is more adequate to use the domain €y with crack tip
on the interface Z as a reference configuration. Then the change AU of the potential
energy is expressed with coefficients of the near field expansion of the displacement
field u° around the tip (0,0). To this end we need the power law solutions X', Y
(e.g. [3, 4]) to the elasticity problem in composites, which are but solutions to the
elasticity problem in the plane with semi-infinite crack Z + = {(r,¢) : ¢ = £7},
(r, ¢ polar coordinates around the crack tip (0,0)):

—dive =0inR*\Zxs, o0pp=02=00nZy, (5)

completed with Hooke’s law (2) and the transmission condition (3). There are always
two sequences of power-law solutions

XI(r,9) =rV® (), Red; > 0, YI(r,p) =r YT (yp), (6)

the numbers \; being generalized eigenvalues. For our purpose it is enough to
consider only the values close to zero. For homogenous solids that is AY = Al it is
well known [5, 6] that A = £1/2 are double eigenvalues with related pairs of power-
law solutions of the form (6). If the Hooke tensors are different and in particular
related to anisotropies the following situations may occur as perturbations of the
eigenvalue A = 1/2:

Case 1: Two simple real eigenvalues 0 < \; < Xy < 1 with X? = 7} ®i(¢),

Case 2: A pair of conjugate complex eigenvalues \; = A\, \y = \ with

X=X =r"0(p), X2=X=r"3(yp).

Case 3: A double real eigenvalue 0 < A < 1 with

X =70l (p), X?=r"Inrd*(p) + 0 (p).
Case I appears always if the two materials are isotropic [7], the eigenvalues are found
as roots of a transcendental equation. In [8] conditions on the elastic moduli were

derived under which case 2 or 3 happen. The displacement field u° has the near
field decomposition near the tip (0, 0):

'U,ONK1X1+K2X2+..., (7)
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for a complex eigenvalue \ this simplifies to
u ~2Re(KX)+...=2(ReKReX —ImKImX) + ...

For each pair X!, X? of power-law solutions there exists a pair of dual power-law
solutions

Yi=r"00 ), i =1,2 Case 1 (8)
Yiz)=r 2 U(p), Y2(x)=r"U(p) Case 2 (9)
Yiz) =70 (@) — r A nrT?(p), Y2(z) = r AU (p). Case 3 (10)

By Clayperon’s theorem the potential energy can be represented as an integral over
the external boundary:

1 1
U(—Aa) = —3 /p ~u”2%ds, hence AU = 5 /p- (w2 —u)ds,  (11)
r r

A 0

which means we can calculate the energy release if we know the difference u=2% —u
on the external boundary I'. To calculate this as least asymptotically we use the
method of matched asymptotic expansions [9, 10, 11]. For small Aa, near the
external boundary I', the solution u=2® will not differ too much from the solution
u®, hence u=2% is approximated by an outer expansion

w2 z) ~ul(x) + a N x) 4 axlP(z) + ..., |z| > Aa. (12)
The functions ¢/ are so-called weighting functions (cf. [12],[13]),
¢ =Y+

here (7 are solutions to the problem (1), (3) for Aa = 0 and p = —o(Y7), hence ¢
are singular at the crack tip (0,0), moreover

G ~Yidmp X4+ ..., |z|—0. (13)

Depending on the fixing of X7, the dual power law solution Y7 can always be nor-
malized in such a way that

Kj:/p-des, resp. K:/p-zds, (14)
T I

which plugged into (11) gives

2AU = Kja1(Aa) + Kyas(Aa) + ..., or

AU = Re(Ka;(Aa)) + ..., (15)

respectively, observe that in Case 2 we have ay = a7. To determine the coefficients
a we use the inner decomposition of u~2¢. Passing to the stretched coordinates
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¢ = x/Aa fixes the crack tip in the point (—1,0) while the outer boundary moves
to infinity as Aa — 0. We define the weight functions at infinity, 77 = X7 + nJ, as
solution to the elasticity problem (in &-coordinates) in the plane with half infinite
crack ending in (—1,0), the interface is situated on the line z; = 0, and 77] is regular
at infinity, that is

W(E) ~ MY (&) + ..., | = oo (16)

The 2 x 2 matrix M = (M) is symmetric resp. hermitian and negative definite.
Near the crack tip, the solution =2 is approximated in terms of solutions of these

solutions in stretched coordinates, that is by the inner expansion of the form
u(Aa'z) = uB* (&) ~ bin' (&) + ban® () + ..., Aa < 1. (17)

The coefficients a; in (12) and b; in (17) depend on the distance Aa, of course.

THE CALCULATION OF THE ENERGY RELEASE RATES

Exploiting the homogeneity relations of the power-law solutions X7, Y7 together
with the representation (16) of the weight functions 77, the asymptotic representa-
tion at infinity of the inner decomposition (17) can be rewritten in z coordinates.
The asymptotic representation (13) of the weight functions (7 gives the asymptotics
of the inner decomposition (17) near the point (0,0). In a matching zone between
the crack tip and the outer boundary I' both decompositions must coincide. Equal-
izing the coefficients in front of the power-law solutions X7, Y7 gives a system of
four equations for the coefficients a; and b;, j = 1,2. To be more specific, we put

K1 ap b1
K — = b fr
<K2>7 ? (a2)7 (b2>7
m — mi1 M2 M = My My
mMo1 M99 ’ M21 M22 ’
where K are the coefficients in eq. (7), m;; are given in eq. (13), and M,; in eq. (16).

Case 1: Two real eigenvalues 0 < \; < \.

With
M(Aa) = <<A3>A1 ( ASW) M. (<A3>M (A2>A2>

we obtain
a=M(Ad)- (I-m-M(Aa)) 'K, I= (é (1)> (18)
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It is clear that the inverse matrix appearing in this formula exist for small Aa. Using
the Neumann expansion we find

(I-m- M(Aa))_l =T+m-M(Aa) + O(Aa)?,
which gives
a= M(Aa) - K + O(Aa)*.

By eq. (15) the main term in the energy release can be calculated to

AU = - ((Aa) M1 (K71)? + 2(Aa)M T M K Ko + (Aa)? My (K5)? + .. )

1
2

Case 2: A pair of complex eigenvalues \; = \, Ay = \.
Here the weight functions also come in complex conjugate pairs

("=¢ ¢=¢ nt=n =7

while for the complex intensity factor K we have to take eq. (14);. The matrices m
and M have complex entries now as well, but still are hermitian, and M is negative
definite. In particular, from (16) it follows that M can be written in the form

M = (% ]\Aﬁf) (20)

The homogeneity relations for the X and Y now lead to

Mo = (G ) (G577 i)

while formulae (18) remains the same. The complex coefficients a; of the outer
decomposition now turn into

a1(Aa) = K(Aa)M My + K(Aad)* Mo+ ..., as(Aa) = ar1(Aa).  (21)

Hence the energy release AU while the crack tip moves from the tip (—Aa,0) to
(0,0) becomes

AU = (Aq)?Re? (MI\KP + Re(K*Mye 2 W)) + ... (22)

Case 3: A real double eigenvalue A with geometric multiplicity one
While rewriting the inner decomposition of 4% in terms of z-coordinates, one has
to take into account the logarithmic terms in the power-law solutions. We introduce

the matrix
Q:I: - Q:E(Aa’) - (j:ln}Aa) (1)) ) then Q:T;l - Q:F-
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Equalizing the coefficients in front of X7 and Y7 in the expansions eq. (17) and (12)
now leads to the system

K+m-a=Q'- (Aa)™b,
a=Q, M- (Aa)'b.
From here we get
a=(Aa)?QM- (I-Q] m-Q, (Aa)®M) " -Q] K
=(Aa)*Q - M-Q - K+....
Using (15) once more leads now to
2AU = (Aa)?K"- Q- M-Q] -K+...
= (Aa)® ( My ( Ky + Kz In(Aa) ) +
DMK, (K + KaIn(Aa) ) +Mk3 ) 4.

Note that all these formulae remain valid but with an additional factor —1, if we
start with the crack tip already on the interface. Thereby the following obvious
changes must be taken into account: the weight functions 7’ are now solutions
to the interface problem in the plane with half infinite crack where the tip is sit-

uated in (0,1), the matrix M is positive definite, and formula (11); now reads
AU = -1 [.p- (u”* —u0)ds.

CONCLUSIONS FOR THE CRACK GROWTH

While for a selvage crack in a homogenous material the energy release rate G always
satisfies
—AU

G=:lim—— =K' -M-K >0,
rl0  h

it may happen here that G = 0 or G = co. This means the crack cannot reach the
interface if

A1 >1/2, (Case 1) ,ReX > 1/2 (Case 2) ,A > 1/2 (Case 3) ,

because the G = 0 and Condition (4) cannot be met. If the relation > is replaced
by < we have G = oo hence the crack undergoes at least a phase of unstable
propagation.

It may as well happen that there is an equality in the relation above. In case
1 the energy release rate is determined by the first summand in eq. (19) alone, if
A1 < Aa. The crack tip will move in direction of the interface if G overcomes the
critical energy release rate in the first material. In case 3 we have ¢ = oo unless
K5 = 0, then again K, has to be critical. In case 2 there appears an oscillating term
in formula (22), however we may conclude that the crack can reach the interface if
| Ms] is sufficiently small in comparison to |M].
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