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ABSTRACT. We calculate the distribution of the stress intigngactor for a semi-
infinite tensile crack with a slightly curved froatmbedded in some infinite medium, up
to second order in the deviation from straightneSeom there, we determine the
equilibrium shape of the front of the crack whepribpagates along a heterogeneous
fracture plane, up to second order in the toughrfegguations. As a first application,
we show that the “apparent fracture toughness” eigreced by a crack propagating in
a randomly heterogenous material is slightly ldsmtthe rigorous average value of the
local toughness. As a second application, we detertihe equilibrium shape of a crack
front penetrating into an infinitely elongated hardbbstacle.

INTRODUCTION

In a celebrated paper, Rice [1] derived a formwathe first-order variation of the
mode | stress intensity factor (SIF) resulting freome small but otherwise arbitrary
coplanar perturbation of the front of a semi-inkntensile crack in an infinite body.
This formula has been applied many times sincetudy the propagation of cracks in
materials having an inhomogeneous distribution ratture toughness; see e.g. the
works of Gao and Rice [2] and Chopin [3] on th@piag of crack fronts by obstacles.

In the present work, we shall extend Rice’s formuolaecond order in the deviation
of the crack front from straightness. This will dene through basically straightforward
application of general formulae for the first-ordariations of the stress intensity factor
and fundamental kernel (FK, to be defined belowg tiuRice [4].

Two applications of the extended formulae found bl envisaged:

« Calculation of the “apparent toughness” of a hejen@ous material, that is the
toughness of some suitably defined “equivalent hpeneous material”. It will
be shown that this apparent toughness is slighlg than the rigorous average
value of the local toughness, as a result of tiee tfaat strict stability of crack
propagation demands that the unperturbed stresssity factor decrease when
the front moves in the direction of propagation emcbnstant loading.
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» Determination of the equilibrium shape of a cracnf penetrating into a harder
obstacle of infinite length in the direction of pagation, up to second order in
the gap of toughness between the matrix and thiadbs

RICE’'S FORMULAE FOR AN ARBITRARY PLANAR CRACK

Consider an isotropic elastic body containing a planar crack with arbitrarily shaped
contour. Assume the body and the loading to be sgtmecnabout the crack plane. The

crack is then in a situation of pure mode | allngidts front; lets and K°(s) denote a

curvilinear abscissa along this front and the |&i&l, respectively.
Now displace the crack front, within the crack @aby some infinitesimal distance
oa(s) perpendicularly to itself, while keeping the loagliunchanged. The resulting

infinitesimal variationoK (s)) of the local SIF is given by Ricefsgst formula[4]:

K () =[IK(D] sagsasos™ PVl 25 B ROHS @)s3 (@) (1)

where the integral over the crack froi@K) is to be understood as a Cauchy principal
value (PV). In this expression[,dK(sl)] denotes the value adK(s)) for a

oda(s)=da(g),0¢
uniform advance of the front equal tda(s), and Z(s, 9 the FK of the cracked

geometry considered. This quantity, which is tiedBueckner's mode | crack-face
weight function, has no dependence upon the loadihgr than on which portions of
Q and 0Q have forces versus displacements imposed, andiegethe following
properties:

2(5,9)= A 9 ; Ls;%wl_%)z for s-s 0. @

In addition, if da(s) vanishes ats ands,, the infinitesimal variationrdZ(s, s) of

the FK at these points is given by Ricesscond formulg4], which involves two
principal values, at the pointg ands,:

0Z(3,8)= P, A5 B LS (s 3)

APPLICATION OF RICE’'S FORMULAE TO A SEMI-INFINITE C  RACK

Generalities

We now consider (Figure 1) a semi-infinite tensitack located in some infinite body
subjected to prescribed forces only. The cracktfreassumed to be slightly curved, its
equation in the plan®xz being of the form
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X(2) = at+e@ 2, (4)

where a is the distance from the ax{3z to some “reference straight front, a small
parameter andgyz) a given function. The position of the front is shgpecified by the

parametersa and &, and the position of a current point along it bg toordinatez .

Figure 1: A semi-infinite crack with a slightly perbed front in an infinite body.

The SIF for a given, fixed loading and the FK foistcracked geometry are denoted
K(a,€;z) and Z(¢;z, z) respectively. (The FK is independent af because the

geometry is insensitive to translatory motionshaf track front in the directior). The
topic of interest here is the expansionskofa, €;z) and Z(¢; z, z) in powers ofe,

and more precisely the second-order expressiomeoffarmer quantity and the first-
order expression of the latter:

{K(a,f; 2)=K(a+eK(a g+’ K(a+ @) (5)

Z(6:2,2)= 2(z 9+ A 72 2+ @)

(The loading is assumed to have a translatory ianee in the directiorz so that the
unperturbed SIFK°(a) depends on the positica of the (straight) front but not on the
position of the point of observation along it).

Expression of the fundamental kernel at order O
No general expression can be provided for the dageyd SIFK°(a) since it depends
on the loading, but the expression of the unpeedifiK Z°(z, z) is (Rice [1]):

1

“ -y

(6)
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Expressions of the stress intensity factor and fuamdental kernel at order 1
The expression ofK'(a; z) is obtained by applying Rice's first formula (1) the
straight configuration of the front using Eq. (&hd integrating by parts:

AT
\,f_m i (7)

The expression oZ'(z, z) may be obtained in a similar way from Rice's secon
formula (3) and Eq. (6). An arbitrary perturbaticsg(z) generally violates the
conditionseg(z) = ¢ z) =0, necessary for Eq. (3) to be applicable, but diffsculty
may be overcome by using Rice’s suggestion [4]eicothpose this perturbation in the
form ega(z):[gqo(z)—gqa(z)]+£ga(2( where £¢(z) is a suitable combination of a
translatory motion and a rotation (having no efcthe FK) such that@(z) = ¢ 7)
and @ (z,) =&¢(z) . One thus gets:

. _ 1 w1 1),
Z\(z, 4)——4772(21_22)2 PV K P Z]qo(i

2 ( 1 1J¢(z)}dz
L4\ -2 = £
Expression of the stress intensity factor at order

The expression oK ?(a;z) may be obtained by applying Rice's first formul3 (o a

configuration of the front deduced from the straigme through the perturbation
EQ(z), and further perturbed by the amoudt ¢(z) where & is an infinitesimal

quantity. The formula provides an integral expra@ssif the derivativedK (a, €;z)/0&
accurate to first-order i@ if the first-order expressions &(¢; z, 2 andK(a,¢; z) are
employed; and the second-order expressiofK{d, €; z) follows through integration.
One thus gets:

Ki(z) =29 K (a)[m)]%idi(a) PVI_T%M

2 da

2 (1 1 qa(z) A 2)
+z-a(2-; z ;ﬂ )} z ¥ dzaz.

(8)

+00

(9)

—00
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Expression of the energy-release-rate at order ZHourier's space
From there, one may calculate the second-orderesgfmn of the energy-release rate
(ERR) G(a,¢; 7). The result is best expressed in Fourier’s spélse.definition of the

Fourier transformf(k) of an arbitrary functiony(z) adopted in this work is
too ikz ~ l +00 —ikz
W@)=[_pRerdk - P(h=_—[ y(x)e* dz (10)
00 7T 00

With these notations, one ge®?(a) denoting the unperturbed ERR:

Glag k)= @ (Jo(k) +e G(aR+s” G ap+ @), (11)
~ dG° -
Gl(a )=e°(a)[ = (3- }o( )
K G da | H K (12)
Glak)=G(3] Qakk W W ko xd
~_1d°G° 1 dG 1
Q(a’ k’ k)_EGOdaZ _Z GO da(| k+ K|_| *_| l4)-'-_8{Sgn( kK)( k- k} (13)

+[sgnk )~ sgnk J[k+ k| &= k¥ |(k=| K3} .
EQUILIBRIUM CRACK FRONT SHAPE IN A HETEROGENEOUS ME DIUM

We now consider crack propagation governed by @1if criterion in a material
having a heterogeneous fracture toughr@s, 2 given by

G.(x 2= G[1+&£ g(x 2 (14)

where G, is a “mean fracture toughnesst, a small parameter angd.(X, 2 a given

function.
AssumingG to be equal tdG, at every point of the crack front, the distributiof

toughness determines the shape of this front irotime
x=a+eg(aq )+e'¢’(a 3+ Q) (15)

where a, ¢/(a; 2) and ¢#(a;2) are a parameter and functions to be determinedicTo
so, it suffices to equate the Fourier transfornthaf expansion of the ERR, deduced
from Egs. (11), (12) and (13) witlp=¢ +&¢”, to the Fourier transform of the
expansion of the local toughness,
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G, (X, z)=§[1+£ a(a 3+52%( aw( a%+ @°).

One thus gets the following conditions:

C@=G . dag=-——2L

|k1|_%(a)
~ 1 o _ g.(a K «
R A T i -

G’da G da
y é:(a, K— k) dk +°°ﬁ K /Q\l( a !_(_ k dk
k-K- 9% (@ )|k1_k|_ a&
G°da G°da

The first condition determines the positian of the reference straight front as a
function of the loading applied, and the second thmd conditions then determine the
first- and second-order perturbations of this front

APPARENT TOUGHNESS OF A HETEROGENEOUS MATERIAL

In this section and the next one, we introducefdiewing hypotheses on the variation
of the unperturbed ERR:

d4G° res
<0
a2 @ R

(a)>0. (17)

The first hypothesis is necessary for crack propagao be strictly stable, and the
second is reasonable sinG&(a) is then a positive decreasing functionanf

We consider here a material with a randomly hetemegus, but statistically
homogeneous distribution of fracture toughness. "Hpparent toughnessG:" (a) of

this material is defined as the value of the ERRafdictitious straight crack having the
same average position as the real, curved one:

Gi"(a)= G (a+e(¢(a )+ (¢ a P+ @) (18)

where<¢1(a; z)> and<qo2(a; z)> are the average values @f(a; 2 and ¢#(a; 2) .
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The calculation of these average values is maderdasassuming the distribution of
toughness to be periodic in the directibnso thatg, (X, 2) is of the form

0.(% 2= D G (3 €’ (19)
wherek, is a positive wavenumber and the(x) coefficients;c,(X) may be assumed

to be zero for every since the degree of arbitrariness left on thenitigh of G_
permits to consider it as identical to the exa@rage value of the local toughness.
Calculating ther(qz}(a; z)> and<qf(a; z)> and using the definition (18), one gets

d’G’
_ () k- (3
G:ﬁ(a):GC+£2§ da é <

m=1 dG°
[ 5 5oda? }

where the|cm(x)|2 have been averaged over a distance much largerthieatypical

distance of fluctuation of the local toughness,utito still much smaller than the
distance over whictG°(a) varies significantly. By inequalities (17), eaghm in the

6. (3 )+ ae) (20)

series is negative, so th&" (a) is slightly less than the exact average tough@ss
the effect is tied to the dependence of the ungeeth ERRG’(a) upon the positiora

- 0.

EQUILIBRIUM SHAPE OF A CRACK FRONT MEETING AN OBSTA CLE

We finally consider a matrix of toughne&" containing an obstacle of widtdd in

the direction z, infinite length in the directionx and toughnessG. >G!. The
toughness distribution may be represented by Ef).with

_ G° - GM 1 if |x<d
— M . — ~c (o . —
G =G ; g—G—M ) gC(X 3—{ . |X|>d. (21)

C

We are especially interested here in the first- secbnd-order perturbations of the
0

crack front in the limit G (a) - 0 (meaning that the characteristic distance of
a

variation of the unperturbed ERR is much larger ttieat of toughness fluctuations).
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The integral expressions @f (a; 2) and ¢#(a; z) are found to diverge in this limit, but

not those of¢ (a; 2) - ¢'(a0) and ¢#(a; 2) — ¢*(a0) which suffice to characterize the
deviations of the front from straightness and avergby

d(a; z)—¢1(a0)=%[(1+ Win(j1+ g)+ @ Win(| = ]
—i[(1+ u)In(@+u)+ (1- u)In(@-uj if[y<1 :g, 22)

¢ (3,2 -¢*(80)= u+1
__[(u—sgn(u))ln(—j+ 2|n2:| ifMZ 1
21T u-1

Figure 2 shows the results obtained for variousueslof £. The perturbation
@ (a; 2) + £°¢*(a 2 has been divided here lzyto evidence the non-proportionality of

the two quantities, and the curves have been nadeincide on the boundaries of the
obstacle ¢ =+d) rather than at its centez € 0) to facilitate their comparison.

10" +£09)(2)~(0 +e0) ()] / d

z/d

Figure 2: The shape of a crack front deformed leypitesence of an obstacle.
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