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ABSTRACT. In order to prevent the initiation of a brittle crack in a marine structure, 
fatigue crack propagation from potentially hazardous embedded weld defects must be 
evaluated under the realistic seaway loading using a certain clustered loading pattern. 
We first simulate the fatigue crack propagation under the random sequence of clustered 
loading so-called Storm Model. The numerical simulation is carried out by a method 
considering the plastic wake on the crack surfaces, which may cause the retardation 
effects after high amplitude of loading. Furthermore, fatigue crack propagation under 
the effect of slam-induced whipping stress is examined by a series of experiments using 
CT specimens. 
 
 
INTRODUCTION   
 
The rapid size-increase of container ships has lead to the application of extremely thick 
steel plate (the thickness range of 50-75mm) in the deck structures such as hatch side 
coaming, upper deck and other structural members in order to satisfy the requirement of 
longitudinal strength (strength as a ship beam). Recent researches have revealed that 
current structural design does not necessarily have the satisfactory background data for 
the structural integrity of the large container ships constructed by using these extremely 
thick plates1). This may lead to some concerns about the fracture toughness of welded 
joint, which is thicker than 50mm, because fracture toughness along the butt-welded 
joint was formerly investigated for plates with moderate thickness. It is of our 
immediate interest to reconsider the possible scenarios of crack propagation and arrest 
behavior in ship structures, whose possible paths may include the one illustrated in 
Fig.1.  
 

Also, the detection of weld-defects during the construction stage of a vessel and 
fatigue crack detection by periodical in-service inspections are essential to prevent 
brittle fracture, where fatigue crack propagation from embedded flaws in the weld under 
realistic seaway loading must be predicted for the proper determination of the 
acceptable size of the initial defects and the maximum inspection interval based on 
fracture mechanics approach 1,2) (see Fig.2). In the present paper, investigations are 
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made for the fatigue crack growth subjected to random sequence of clustered loading, 
which simulates a certain seaway loading.  Numerical computations are carried out for 
the crack growth in thick plates of deck structures. Further discussions are also made for 
the retardation effects, experimental verifications, and the effects of slam-induced 
whipping stress.  

 

 
 

Figure 1. Possible crack path of brittle fracture in a deck structure. 
 

 
 
Figure 2. Fatigue crack growth from an internal defect in extremely thick welded joint. 

 
 

FATIGUE CRACK PROPAGATION IN A THICK PLATE UNDER RANCOM 
SEQUENCE OF CLUSTERED LOADING 
 
Modeling of an Embedded Crack and Random Sequence of Clustered Loading 
In the present paper, fatigue crack propagation from an initial elliptical defect is 
investigated, which is assumed to locate in the middle thickness of the plate and to be 
subjected to repeated stresses (see Fig.3). The stress intensity factors at the ends of the 
major and minor axes of the ellipse can be evaluated by an empirical formula 3).  

A random sequence of cluster loading is simulated by the so-called storm-model4, 5). 
We generated six clustered load patterns A, B, C, D, E, and F as illustrated in Fig.4, in 
which each clustered loading sequence consists of 48,000 loading cycles of gradually 
increasing and decreasing stress amplitudes. The probability of occurrence of Storm A 
to F is defined in Table 1 so that the total spectrum of the loads satisfies a given Weibull 
distribution in the Northern Pacific route. During the crack growth simulation, these 
clustered loads are applied by numerically generated random sequences of loading 
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based on the probability of occurrence. The applied stress condition is assumed in such 
a way that the maximum stress range is 262[MPa] and the mean stress is 112[MPa], 
with the Weibull shape parameter, 1.0. The total number of 93 clustered loads may be 
interpreted as the 4464x103 highest cycles among the 108 cycles of seaway loading in 
25years of service. 

 
 

Figure 3. Embedded elliptical crack in a thick welded joint. 

 
Figure 4. Clustered loading patterns A to F. 

 
Table1: Probability of occurrence of the clustered loads A-F. 

Storm A B C D E F 
Probability 42/93 25/93 12/93 7/93 6/93 1/93 

 
Numerical Simulation of Fatigue Crack Growth 
Numerical simulations are carried out for an embedded elliptical crack  propagating in a 
thick plate for 20 sets of random sequence of clustered loading by the two methods 
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based on the repeated  tensile plasticity range, and the effective stress intensity range, 
respectively. We shall present a brief account of these methods below.  
 
Crack growth model based on ΔKRP 
The main procedure of the simulation is summarized as follows; 
1. calculate the stress intensity range at points A and B of the elliptical crack subjected 

to repeated tensile loading, 
2. near-tip plastic deformation including crack opening, closure, and repeated tensile 

plasticity are analyzed by the strip-yielding model subjected to the k-field as the 
far-field boundary condition at the crack front points A and B6), 

3. the repeated tensile plasticity range of stress intensity, ΔKRP, is used as the measure 
of the size of repeated plasticity region at each crack tip in order to calculate the 
crack growth rate7, 8) 

4. crack tips A and B are moved to the extended crack tip so as to form a next 
embedded elliptical crack, and go back to step1 to continue the simulation. 

Toyosada et al. 7, 8) defined a load, at which the tensile yielding begins to develop 
ahead of a crack tip under a reloading process. The stress intensity factor corresponding 
to this load level is defined as kRP, and the effective stress intensity range, ΔKRP, is 
defined by 

,maxRP RPkkK −=Δ                                                   (1) 

where kmax corresponds to the stress intensity factor at the maximum load. The crack 
growth law based on ΔKRP is expressed by 

.)(/ RP
mKCdNda Δ=                                              (2) 

With regard to the mechanism of fatigue crack growth during each load cycle, there still 
exist several unknown phenomena. The possible difference of residual plastic wake of a 
fatigue crack surface is illustrated in Fig.5, in which if a fatigue crack extends during 
the unloading process, the crack tip may fully be stretched with its crack opening 
displacement denoted by )(min xv  (left-hand side of the figure), while if it occurs during 
the loading process, it may be minimized as denoted by );(~

min ccxv Δ+  (right-hand side 
of the figure). Possible plastic deformation during the crack growth may be assumed 
somewhere between these two extremes and expressed by; 
 

(3) 
 
where the parameter, κ, is approximated by                    
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The quantity, γe is the previously formed maximum plastic zone size, while γpi is the 
plastic zone size generated by the current maximum load, and α and n are the material 
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constants to be determined. As a result, the thickness of the residual plastic wake 
increases with decreasing the parameter, κ, which may play an essential role to the 
retardation of fatigue crack propagation.  
 

 
Figure 5. Mechanisms of the formation of plastic wake during fatigue crack growth 
 

In the numerical simulations in this section, the following material constants are 
used; C=4.506×10-11[SI-unit], m=2.692, plastic constraint  factor λ=1.04, plastic wake 
parameters, α=0.1, n=0.1, Young’s modulus E=206[GPa], Poisson’s ratio ν=0.3, 
σY=417[MPa]. 
 
Simple crack growth model 
As a conventional model, we shall simply replace the above-mentioned steps 2 and 3 by 
the following crack growth law9)  

},)(){(/ theff
mm KKUCdNda Δ−Δ⋅=                                 (5) 

where ΔK is the stress intensity range, C=1.411×10-11[SI-unit], m=2.958, (ΔKeff)th 
=2.58 [MPam1/2] are the material constants. U is the effective crack opening ratio given 
by 
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where R is the stress ratio. It should be noted that the retardation and acceleration 
effects of fatigue crack propagation induced by load sequences cannot be considered by 
this simple crack growth model. 
 
Shape Change of the Growing Cracks 
The typical shape change of the embedded crack is illustrated in Fig.6 (a) for a case of 
its initial shape 2a=25mm and 2b=5mm, which shows the gradual change from elliptical 
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to circular shape. The change of the aspect ratio of the elliptical cracks under 20 
different load sequences is obtained by the crack growth model based on ΔKRP, and the 
results are shown in Fig. 6(b). We can see from this figure that the effect of the load 
sequence is not so significant to the shape change of embedded cracks. 
 
 Retardation Effect of Seaway Loading 
Crack propagation lives are shown in Fig.7, in which the conventional simple method 
estimates considerably shorter (conservative) lives than those predicted by the crack 
growth model based on ΔKRP-criterion, because the former does not properly take into 
account of the increase of the thickness of plastic wake after a high level of applied 
stress, which apparently leads to the retardation of fatigue crack growth. The average 
fatigue lives obtained by ΔKRP-criterion is approximately 2-3 times longer than those 
calculated by the simple method, and the coefficient of variance of the curves by ΔKRP- 
criterion is less than 10% (see Table 2). Since the retardation effect may increase the 
scatter of fatigue crack propagation lives, we need further investigation by numerical 
simulation combined with experiments.  
 

 

(a) crack shape 
 

(b)  
 
 
 
 
 

 
(b) aspect ratio 

 

Figure 6. Geometric change of an embedded crack (initial crack 2a=25mm, 2b=5mm).  
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Figure 7. Varieties of simulated crack propagation life of an embedded elliptical crack. 

 (initial crack 2a=25mm, 2b =5mm) 
 

Table 2 Mean, standard deviation and COV of crack propagation lives  
(initial crack 2a=25mm, 2b =5mm) 

Initial crack 2b=5mm
Crack length 

5mm 10mm 15mm 20mm 30mm 35mm 40mm

ΔKeff 
20 samples 

mean 1.98E+06 3.85E+06 5.03E+06 5.88E+06 6.86E+06 7.13E+06 7.33E+06

std. dev. 1.29E+05 2.14E+05 2.49E+05 2.55E+05 3.46E+05 3.59E+05 3.78E+05

COV 6.50E-02 5.55E-02 4.96E-02 4.35E-02 5.05E-02 5.03E-02 5.15E-02

ΔKrp 
20 samples 

mean 5.68E+06 1.23E+07 1.62E+07 1.87E+07 2.14E+07 2.21E+07 2.25E+07

std. dev. 5.29E+05 1.17E+06 1.39E+06 1.51E+06 1.62E+06 1.63E+06 1.65E+06

COV 9.31E-02 9.46E-02 8.57E-02 8.09E-02 7.58E-02 7.37E-02 7.32E-02

 
FURTHER DISCUSSIONS 
 
Some Considerations about Retardation Effect 
In order to investigate the effect of sequence of the clustered loads and the so-called 
equivalent constant amplitude of loading, fatigue crack propagation is simulated for the 
five cases explained below and the results are illustrated in Fig.8. 
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Case 1 Repeated equal clustered loading 
Having generated 93 sets of clustered loads based on the probability of occurrence 
given in Table 1, the load sequence is re-ordered to the one set of monotonically 
increasing and decreasing load sequence, whose load cycles are then divided by 93 to 
form the 93 equal clustered loads.  The crack propagation life so obtained is slightly 
shorter than the average of the random sequence of clustered loading given in Fig.7.  
 
Case 2 Clustered loads applied in ascending order 
The 93 sets of clustered load are generated based on the probability of occurrence given 
in Table 1, and the load sequence is re-ordered in such a way that the clustered load 
level is increased from A to F in the ascending order, and this load set is repeatedly 
applied. The result shows a slightly longer crack propagation life compared with that of 
Case 1.  
 
Case 3 Monotonically increasing load sequence 
Having generated 93 sets of clustered load which is the same as Case 1, the load 
sequence is re-ordered to monotonically increasing order. The crack propagation life is 
considerably shorter than those of the previous cases as illustrated in Fig.8, because no 
retardation effect can be expected in this loading sequence. 
 
Case 4 Intentionally retarded loading sequence 
This is the case, where the 93 load sets are re-ordered to maximize the retardation effect 
by intentionally ordering the lower levels of the clustered load patterns, A and B after 
the higher levels of the clustered load patterns such as F and E. The result shown in Fig. 
8 is obtained by repeatedly applying this load pattern. 
  
Case 5 Equivalent constant stress range  
In case of random loading, the equivalent stress range defined by 
 

m
ii

m
ieq nn∑ ∑⋅Δ=Δ /)( σσ                                                (7) 

 
is commonly used to estimate the fatigue life, where Δσi is the stress range of the i-th 
level, ni is the corresponding load cycles, and m is the power of the crack propagation 
law, respectively. In the present case, the maximum stress, σmax=137.6 [MPa], and 
minimum stress, σmin=86.4 [MPa], and the crack propagation life so obtained is 
illustrated also in Fig.8, exhibiting the shortest fatigue life, because we cannot expect 
the retardation effect under constant amplitude loading. 
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Figure 8. Comparisons of fatigue crack propagation lives under different sequence of 

the clustered loads (cases 1-4), equivalent constant load (case 5), and the average of the 
random sequence of clustered loading. 

 
Experiments and Simulation of Fatigue Crack Propagation under Random Sequence 
of Clustered Loading  
In order to examine the validity of the present simulation, fatigue crack propagation 
tests were carried out by using CT specimens (see Ref. [10] in details). In order to 
determine the material parameters, α and n, in Eq.4, which play an essential role to 
predict the realistic retardation behavior of fatigue crack growth, the material parameter, 
α, is first estimated by a constant amplitude test. Then, the random sequence of 
clustered load is applied to the same specimen to ensure the accurate determination of 
the material parameters, n, in Eq.4. From these experiments, we obtain α=0.015-0.020, 
and n=-1. Other material constants commonly used for numerical simulation are 
C=3.514×10-11(SI units), m=2.692, and mechanical properties, E=206 [GPa], ν=0.3, the 
plastic constraint factor, λ=1.04, respectively. 

Numerical simulations and the corresponding experiments have been carried out by 
using two specimens, to which the same constant amplitude load followed by the same 
random sequence of clustered load is applied. Even under the completely same loading 
sequence, the crack propagation behavior in experiments obviously exhibits a slight 
difference, while the difference in numerical simulation stems from the slight change of 
the material parameter, α (see Fig.9). These results show the very good agreement so 
that the proposed method can predict the fatigue crack growth behavior under the 
random sequence of clustered loading. It should again be noted that the estimated crack 
propagation lives based on the equivalent load are rather conservative. 
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Figure9. Comparisons of experimental and simulated crack propagation lives10). 

 
Effect of Slam-induced Whipping Stress 
In certain heavy sea conditions, marine structures are subjected to wave bending stress 
superimposed by slam-induced vibratory stresses. In order to study the effect of such 
vibratory stresses, fatigue crack propagation tests are carried out by using CT-
specimens under the conditions listed in Table 3. Some loading time-histories are also 
illustrated in Fig.10. The results of the crack propagation lives are compared in Fig.11, 
in which the numerical simulations for M-0.5, M-1.0, and M-1.5 are also included for 
reference. The material constants are the same as those in the previous subsection 
except for C=1.770×10-11[SI-unit] and  m=2.938. It should be noted that the number of 
cycles in the figure is based on the low frequency load cycles. 
 

 
(a)                                                               (b) 

Figure 10. Load histories; (a) constant amplitude tests, W-1.0 and W-2.0, and the 
superimposed high frequency load, WH-1.0; (b) slam-induced stress, WS-1.0, and the 

corresponding low frequency load, M-1.0. 
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Table 3. Test conditions of specimens 

Specimen Test conditions 
W-1.0 Basic constant amplitude test (see Fig. 11(a)) 
W-2.0 Load level is twice as high as W-1.0  (see Fig. 11(a)) 

WH-1.0 Basic constant amplitude +high frequency constant amplitude with the 
same magnitude   (see Fig. 11(a)) 

WS-1.0 Basic constant amplitude +slam-induced dynamic stress of the same 
amplitude (see Fig. 11(b)) 

M-1.0 Low frequency stress with the same maximum and minimum stresses as 
those of WS-1.0 (see Fig. 11(b)) 

WS-0.5 Basic constant amplitude +slam-induced dynamic stress of the half 
amplitude  

M-0.5 Low frequency stress with the same maximum and minimum stresses as 
those of WS-0.5 

WS-1.5 Basic constant amplitude +slam-induced dynamic stress of the 150% 
amplitude  

M-1.5 Low frequency stress with the same maximum and minimum stresses as 
those of WS-1.5 

 

 
Figure 11. Comparisons of crack propagation lives for slam-induced stresses 
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It can be seen that the fatigue crack propagation life under slam-induced stress may 

be estimated from results of the M-series specimens, whose maximum and minimum 
stress is the same as those of slam-induced stress but the load cycles do not include the 
high frequencies. 

 
CONCLUSIONS 
The retardation effect of the random sequence of clustered loading has been revealed, 
where the predicted fatigue lives are 2-3 times longer than those predicted by the 
conventional method. It has also been confirmed that the present results are in good 
agreement with experiments and significantly influenced by the load sequence. 
Considerations are also made for the effect of slam-induced whipping stress. 
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