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ABSTRACT.One of the weakest points in concrete dams occurs at the rock/concrete
interfaces at the base of the dam. This has prompted interest in studying the interface
laws that can best represent the interaction between damage due to normal stresses and
damage caused by tangential stresses (traction-separation law) in the process zone, within
the framework of the cohesive crack model. Karihaloo and Xiao [1] proposed considering
the Coulomb friction between the crack faces, instead of a tangential cohesive relationship.
This model is called the cohesive-frictional crack model,and it is different from the model
of frictional contact of crack faces, because the friction operates when the crack faces are
open. In their paper,the above mentioned authors published an asymptotic expansion of a
crack propagating along a joint between homogeneous materials. In the present paper, a
new asymptotic expansion is presented and applied for the case of a crack propagating at
a bi-material interface.

INTRODUCTION
Cohesive crack models are an important means of describing localisation and failure in
engineering structures,with reference to quasi-brittle materials. When these models are
adopted, the stresses acting on the non-linear fracture process zone are considered as
decreasing functions of the displacement discontinuity. These functions are assumed to
be material properties through the use of a pre-defined softening law. When the model is
applied at a real structure scale, the process zone is fully developed, and the displacement
discontinuity shows at least two components: the normal component and the tangential
one. In these conditions, the equilibrium iterations encounter difficulties in converging.
This is a sign that more than one incremental solutions exists. The best way of dealing with
these problems is that of considering an analytical solution of the mechanical problem in a
pre-defined sub-domain. This method is called the Generalised FEM (GFEM). Karihaloo
and Xiao [1] have obtained an asymptotic expansion of the stress and strain fields that arise
around the faces of a fictitious crack growing in Mixed Mode (Mode I and II) conditions
at the interface between two identical materials. A new asymptotic expansion, which can
be applied at a bi-material interface,is presented in this paper.
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THE MODEL
Theoretical investigations on the problem of interface cracks between dissimilar media
date back to the late fifties. Williams [2] performed an asymptotic analysis of the elastic
fields at the tip of an open interface crack and found that the stresses and displacements
behave in a oscillatory manner.Malyshev and Salganik [3] discussed the implications of the
oscillatory fields and made the following comment:"For opposite faces of the cut, the result
is physically absurd that is they are penetrating each other.The fault of the mathematical
model can be corrected if it is supposed that the opposite faces taking mutually convex
shapes start to press into each other forming contacting areas". They also argued that, if
the length of the cohesive zone in a Barenblatt-Dugdale type model is greater than the
region of stress oscillations,the latter can be disregarded near the crack tip.

Polynomial cohesive law for quasi-brittle materials
In order to obtain a separable asymptotic field at a cohesive crack tip, in terms of r and θ
functions, (see Figure 1) in quasi-brittle materials, the softening law has been reformulated
into the following polynomial form:

σy
σ0

=
τxy
µfσ0

= 1 +
L∑
i=1

αi

(
weff
weff,c

) (2i−1)
3

−

(
1 +

L∑
i=1

αi

)(
weff
weff,c

) 2L+1
3

(1)

where
(
σ0,−µfσ0

)
is a point on the failure envelope, αi,i = 1...L,are fitting param-

eters and σy is the stress normal to the cohesive crack faces;weff and weff,c are the effec-
tive opening displacement of the cohesive crack faces and its critical value,respectively.
Eq.(1) can represent a wide variety of softening laws, and it satisfies the following re-
quirements:for weff/weff,c = 0 one obtains σy/σ0 = 1 at the tip of the cohesive crack
(fictitious crack tip,shortening FCT) ; and for weff/weff,c = 1 one obtains σy/σ0 = 0
(see Figure 1) at the tip of the pre-existing traction-free macrocrack(real crack tip). In the
present paper,the softening law proposed in [1] has been used with the coefficients:α1 =
0.096,α2 = −10.063,α3 = 28.738,α4 = −37.847 and α5 = 23.955 (see Figure 2).

Asymptotic fields at the tip of a cohesive crack
The adopted mathematical formulation closely follows that used by Karihaloo and Xiao
[1]. Muskhelishvili showed that, for plane problems, the stress and displacements in the
Cartesian coordinate system can be expressed in terms of two analytic functions, φ(z) and
χ(z), of the complex variable z = reiθ

σx + σy = 2[φ′(z) + φ′(z)] (2)
σy − σx + 2iτxy = 2[zφ′′(z) + χ′′(z)] (3)

2µ(u + iv) = kφ(z)− zφ′(z)− χ′(z) (4)

where a prime denotes differentiation with respect to z and an overbar denotes a complex
coniugate. In Eq.(4), µ = E/[2(1 + ν)] is the shear modulus; the Kolosov constant is
κ = 3− 4ν for plane strain and κ = (3− ν)/(1 + ν) for plane stress; E and ν are Young’s
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modulus and Poisson’s ratio, respectively. For a general mixed mode I+II problem, the two
analytic functions φ(z) and χ(z) can be chosen as series of complex eigenvalue Goursat
functions (Sih and Liebowitz [5])

φ1(z) =
∑
n=0

Anz
λn =

∑
n=0

Anr
λneiλnθ, χ1(z) =

∑
n=0

Bnz
λn+1 =

∑
n=0

Bnr
λn+1ei(λn+1)θ (5)

φ2(z) =
∑
n=0

Gnz
λn =

∑
n=0

Gnr
λneiλnθ, χ2(z) =

∑
n=0

Hnz
λn+1 =

∑
n=0

Hnr
λn+1ei(λn+1)θ (6)

Figure 1. A traction free-crack
at a bi-material interface.

Figure 2. Cohesive law
comparison [4].

Eq.(5) is applied to material 1 in Fig. 1 (0 ≤ θ ≤ π) while Eq.(6) is applied to
material 2 (-π ≤ θ ≤ 0), where the complex coefficients are An = a1n + ia2n,Bn =
b1n + ib2n,Gn = g1n + ig2n and Hn = h1n + ih2n. The eingenvalues, λn and coefficients
a1n, a2n, b1n, b2n, g1n, g2n,h1n and h2n are real. By substituting the complex functions (5)
in Eqs(2),(3) and (4), the complete series expansion of the displacements and stresses near
the tip of the crack can be written exactly as in Karilahoo and Xiao [1].The coefficients
a1n,a2n,b1n and b2n are used in the case of material 1. The coefficients g1n,g2n,h1n and h2n
are used for material 2.For more details see Alberto A.,Barpi F. and Valente S. [6].

The conditions at the bi-material interface
The opening displacement (COD) of the crack faces can be written asw = v

∣∣∣
θ=π
− v
∣∣∣
θ=−π

:

w =
∑
n=0

rλn

2

[
k1 + λn
µ1

a1n +
λn + 1
µ1

b1n +
k2 + λn
µ2

g1n +
λn + 1
µ2

h1n

]
sin λnπ (7)

and the sliding displacement (CSD) can be written as δ = u
∣∣∣
θ=π
− u
∣∣∣
θ=−π

:
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∑
n=0

rλn

2

[
λn − k1

µ1
a2n +

λn + 1
µ1

b2n +
λn − k2

µ2
g2n +

λn + 1
µ2

h2n

]
sin λnπ (8)

The formulation of the problem shown in Figure 1 can be assessed by establishing
continuity, in terms of stress and displacement, when θ = 0 (the two materials are bonded
along the line of the crack extension), and when θ = ±π (cohesive crack surfaces). The
stresses at the cohesive crack tip are non-singular (because the stress intensity factors are
K1 = K2 = 0). The above mentioned conditions can be summarised as follows.

Cohesive frictional crack with normal cohesive separation
The following conditions need to be satisfied (θ = ±0 , two materials are bonded):

u|ϑ=0+ = u|ϑ=0− , v|ϑ=0+ = v|ϑ=0− , σy|ϑ=0+ = σy|ϑ=0− , τxy|ϑ=0+ = τxy|ϑ=0− (9, 10, 11, 12)

Eqs (9) , (10) , (11) and (12) give:

1
µ1

[(k1 − λn)a1n − (λn + 1)b1n] =
1
µ2

[(k2 − λn)g1n − (λn + 1)h1n] (13)

1
µ1

[(−k1 + λn)a2n + (λn + 1)b2n] =
1
µ2

[(−k2 + λn)g2n + (λn + 1)h2n] (14)

a1n + b1n = g1n + h1n (15)
(λn − 1)a2n + (λn + 1)b2n = (λn − 1)g2n + (λn + 1)h2n (16)

The continuity of u guarantees that of εx. For each value of λn, the asymptotic fields
in material 1 are characterized by a vector of 4 unknowns [a1n,a2n,b1n,b2n]; similarly, in
material 2 they are characterized by a second vector [g1n,g2n,h1n,h2n].

The following conditions need to be satisfied along the cohesive zone (θ = ±π):

σy|ϑ=π = σy|ϑ=−π 6= 0 , τxy|θ=π = τxy|θ=−π = −µfσy|ϑ=π 6= 0 (17, 18)

where µf equals the positive or negative value of the of kinetic friction coefficient, which
is assumed to be constant, and to depend on the relative sliding direction of the two crack
edges. In other words, µf > 0 when δ < 0 and µf < 0 when δ > 0.

Eqs (17) and (18) give:

(a2n + b2n + g2n + h2n) sin((λn − 1)π) = 0 (19)
[(λn − 1)(a1n + g1n) + (λn + 1)(b1n + h1n)] sin((λn − 1)π) = 0 (20)
{[g2n + h2n + µf (a1n + b1n)]λn + [−g2n + h2n + µf (a1n + b1n)]} cos((λn − 1)π)+
{[g1n + h1n + µf (a2n + b2n)]λn + [−g1n + h1n + µf (a2n + b2n)]} sin((λn − 1)π) = 0 (21)

Eqs(19), (20) and (21) show that the asymptotic solution is composed of two parts:
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(a) if sin((λn − 1)π) = 0, Eq.(21) requires:

{[g2n + h2n + µf (a1n + b1n)]λn + [−g2n + h2n + µf (a1n + b1n)]} = 0 (22)

This part of the solution is characterized by integer eigenvalues.
(b) if cos((λn − 1)π) = 0, Eqs (19),(20) and (21) require:

(a2n + b2n + g2n + h2n) = 0 (23)

[(λn − 1)(a1n + g1n) + (λn + 1)(b1n + h1n)] = 0 (24)

{[g1n + h1n + µf (a2n + b2n)]λn + [−g1n + h1n + µf (a2n + b2n)]} = 0 (25)

This part of the solution is characterized by fractional eigenvalues.

(a) Integer eigenvalues
Since g1n and h1n can be written as functions of a1n and b1n [6] through Eq. (13)

and (15),the same expression used in the homogeneous case [1] can hold (w = δ = 0).
For λ0 = 1, one obtains σ0 = a10 + b10, µfσ0 = 2b20 and σx|ϑ=0 = 2a10 − 2b10.

(b) Fractional eigenvalues

λn = n +
3
2
, n = 0, 1, 2, ...

Eqs(14) and (16) allow one to express g2n and h2n as functions of a2n and b2n [6].
Therefore, Eq.(23) gives:

b2n = − (µ1k2λn + µ1 + µ2k1 + µ2λn)
(µ2λn + µ2 + µ1k2λn + µ1k2)

a2n (26)

Eqs(13) and (15) allow one to express g1n and h1n as functions of a1n and b1n[6].
Therefore, Eq.(24) gives:

b1n =
(−µ1k2λn + µ1 + µ2k1 − µ2λn)
(µ2λn + µ2 + µ1k2λn + µ1k2)

a1n (27)

and Eqs(26) and (27) in Eq.(25) give:

a2n = −a1n

µf
(28)

Substituting Eqs (26),(27) and (28) in Eqs (2) and (3) gives:

σy|ϑ=±π =
∑
n=0

r
2n+1

2

[2n + 3
2

(µ2(k1 + 1)− µ1(k2 + 1)
µ2 + µ1k2

)
a2n

]
sin

2n + 3
2

π (29)

τxy|ϑ=±π =
∑
n=0

r
2n+1

2

[2n + 3
2

(µ2(k1 − 1)− µ1(1− k2)
µ2 + µ1k2

)
a1n

]
sin

2n + 3
2

π (30)
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σ̂y =
σy|ϑ=±π

σ0
=
τxy|ϑ=±π

−µfσ0
=
∑
n=0

enr
2n+1

2 (31)

where
en =

1
σ0

[2n + 3
2

(µ2(k1 + 1)− µ1(k2 + 1)
µ2 + µ1k2

)
a2n

]
sin

2n + 3
2

π (32)

It is worthwhile noting that the en coefficients vanish in the homogeneous case.This is the
main difference between the two cases.

Substituting Eqs(26),(27) and (28) in Eqs(7) and (8) gives

w =
∑
n=0

r
2n+3

2

[
2(µ1 + µ2k1)

µ1µ2
a1n

]
sin

2n + 3
2

π (33)

δ =
∑
n=0

r
2n+3

2

[
− 2(k1k2 − 1)

µ1k2 − µ2
a2n

]
sin

2n + 3
2

π (34)

According to the well established literature on the mechanical behaviour of concrete joints
(see Cervenka et al. [7]),softening only depends on weff =

√
w2 + δ2:∑

n=0

r
2n+3

2 2
( (µ1 + µ2k1)2

(µ1µ2)2 a2
1n +

(k1k2 − 1)2

µ2
1k

2
2 − µ2

2
a2

2n

)1/2
sin

2n + 3
2

π (35)

ŵ =
weff
weff,c

=
∑
n=0

r
2n+3

2 d̄n

d̄n = 2
( (µ1 + µ2k1)2

(µ1µ2)2 a2
1n +

(k1k2 − 1)2

µ2
1k

2
2 − µ2

2
a2

2n

)1/2
sin

2n + 3
2

π (36)

Let us consider the truncatedN + 1 terms of ŵ (36), and denote d0 = d̄0,dn = d̄n/d0
(n > 1)

ŵ = d0r
3
2

(
1 +

N∑
n=1

dnr
n
)

(37)

From this relation, we can obtain

ŵ
(2i−1)

3 =
(weff
wc

) (2i−1)
3

= d0
(2i−1)

3 r
(2i−1)

2

(
1 +

N∑
n=1

dnr
n
) (2i−1)

3
(38)

ŵ
(2i−1)

3 = d0
(2i−1)

3 r
(2i−1)

2

(
1 +

M∑
n=1

βinr
n
)
, (M ≥ N ) (39)

in which:

βin =
f (n)
i (0)
n!

, fi(r) =
(

1 +
N∑
n=1

dnr
n
) (2i−1)

3
(40)
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wheref (n)
i (0) denotes the nth derivative at r = 0. We now substitute Eq.(39) in the

right hand side of Eq.(1), and Eq.(31) and a constant stress term in its left hand side. In
this way we obtain:

σ̂y =
(σy
σ0

)
=
( τxy
µfσ0

)
= 1 +

∑
n=0

enr
2n+1

2 = 1 +
L∑
i=1

αid0
2i−1

3 r
2i−1

2

(
1 +

M∑
n=1

βinr
n
)
−

(
1 +

L∑
i=1

αi

)
d0

2L+1
3 r

2L+1
2

(
1 +

M∑
n=1

β( 2L+1
2 )nr

n
)

(41)

Through a term by term comparison applied to Eq. (41) we obtain the relations
between the coefficients ei , αi and βin.

NUMERICAL RESULTS
Figure 3 show a gravity dam model proposed as a benchmark by the Int. Commission On
Large Dams [9] (dam height 80 m, base 60 m, weff,c = 2.56mm, µfσu = 0.85 MPa).

Figure 3. Gravity dam proposed as
benchmark by ICOLD [9].

Figure 4.First term (λ ≤ 1.5) of
the asymptotic expansion:comparison

between the monomaterial case
and bi-material case

Figure 5. Comparison between
an analytical (λ ≤ 1.5) and numerical
solution in the monomaterial case

Figure 6. Comparison between
an analytical (λ ≤ 1.5) and numerical

solution in the bi-material case
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Table 1 show that the assumed material properties and the tensile strenght of the joint
are considered as negligible. Therefore a large value µf = 50 is considered. As assumed
in [8], the water penetrates into the crack where w > weff,c ∗ 2/9.

Table 1. Material properties

Figs 4, 5 and 6 refer tohiff = hc+4m (see Figure 3). A first analysis was based on the
mean value of the parameters shown in Table 1.In this homogeneous case, the asymptotic
expansion proposed in [1] is used.The results are shown in Figure 5 (a10 = 0.211MPa,
b10 = −0.203MPa , b20 = 0.425MPa,a12 = 0.05MPa ,a11 = 0.05MPa and the
distance of the FCT from the upstream edge is 10.8 m) A second analysis was based
on the previously proposed asymptotic expansion . The results are shown in Figure 6(
a10 = 0.1071MPa,b10 = −0.0986MPa , b20 = 0.369MPa , a11 = −0.697MPa and the
distance of the FCT from the upstream edge is 12 m).

CONCLUSION
The special polynomial form proposed as a cohesive law can represent most of the com-
monly used cohesion-separation relations.In this way , the asymptotic fields can be written
in terms of r and θ functions (separable form).Thus the asymptotic fields at the tip of a
cohesive crack growing at a bi-material interface are known.
The simple assumption of mean elastic values is not conservative.
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