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ABSTRACT. In recent years, the use of steel fibre reinforced concrete (SFRC) has 
increasingly spread in several engineering fields. However, the use of this composite 
material requires an adjustment of the computational tools normally adopted in current 
design, as well as a review of the implemented constitutive relationships, which are 
usually referred to ordinary plain or reinforced concrete. In this paper, this problem 
has been tackled by means of a numerical procedure, based on nonlinear fracture 
mechanics concepts, which allows to correctly simulate the fibre contribution, 
especially in the post-cracking stage. More in detail, a macroscopic model (named 2D-
PARC), already developed for ordinary RC structures, has been extended to SFRC 
elements subjected to plane stresses, by taking into account realistic semi-empirical 
constitutive laws for concrete, steel fibres and ordinary reinforcement. The effectiveness 
of the proposed approach has been verified through comparisons with significant 
experimental full-scale tests available in technical literature concerning SFRC beams, 
with or without traditional reinforcement.  
 
 
INTRODUCTION 

 
The increasing use of steel fibres in partial or total substitution of conventional 
reinforcement is mainly related to the improvement in concrete performances [1-3] and 
to the significant labour saving in construction phases, which make this solution 
particularly attractive for different structural applications.  

While in the past the use of SFRC was mainly limited to those structural applications 
for which the use of fibres was not essential for safety issues (such as industrial 
pavements), more recently an increasingly interest has grown in their use for structural 
members subjected to bending and shear, like beams. On this point, several 
experimental studies carried out on RC beams with and without stirrups ([4-8] among 
others) have demonstrated that the global behaviour of these elements can be 
significantly enhanced, both in terms of strength and ductility, by adding steel fibres to 
the concrete mix, with an optimum percentage between 0.5 and 1.5% by volume of 
concrete. Moreover, the enhanced post-cracking behaviour and crack control due to the 
presence of fibres can also potentially determine a significant increase in concrete shear 
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strength, thus leading to the possibility of partially or totally substituting conventional 
shear reinforcement [e.g., 9-14]. This last aspect could be particularly effective in order 
to lessen the congestion of reinforcement in the critical regions of RC framed structures, 
so leading to a more rational and efficient design, especially in seismic zones. In order 
to correctly take into account the effective contribution provided by steel fibres in the 
post-cracking structural response, the analysis of SFRC members should be carried out 
by using proper constitutive models, different from those currently adopted for ordinary 
reinforced concrete structures. To this scope, the 2D-PARC model, already developed 
for RC elements subjected to plane stresses [15-16], has been also extended to SFRC 
ones, by including a proper softening law [3] which takes into account the additional 
transmission of tensile stresses across cracks arising from the bridging effect of fibres.  
 
 
2D-PARC MODEL FOR CRACKED SFR CONCRETE  

 
The theoretical formulation of the adopted constitutive relation, which has been 
originally developed for ordinary RC elements, can be found in details in [15]. In this 
work, the main features of the model will be only briefly outlined, while the attention 
will be primarily focused on the evaluation of the resistant contribution offered by steel 
fibres in the composition of the material stiffness matrix.  
 
Description of the model 
The adopted model, which refers to a SFRC membrane element subjected to general 
plane stresses (Fig. 1), is based on a smeared-fixed crack approach.  

In the uncracked stage, concrete and steel are treated like two materials working in 
parallel, by assuming perfect bond between them, while fibre contribution is neglected. 
Crack formation takes place when the maximum principal stress exceeds concrete 
tensile strength; furthermore, crack pattern is hypothesised as fully developed with a 
constant spacing am1 (Fig. 1a). 
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Figure 1. (a) SFRC membrane element in the cracked stage: geometry and notations; (b) 

kinematical parameters of the crack. 
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In the cracked stage, the model follows a strain decomposition procedure; as a 
consequence, the total strain {ε} can be subdivided into two contributions, which are 
respectively represented by the strain {εc} of SFRC between two adjacent cracks (still 
intact, even if damaged) and the one of the fracture zone {εcr1}, related to all the 
phenomena taking place at crack surfaces (Fig. 2). This last strain vector is first 
evaluated in the local coordinate system of the crack, n1-t1, as a function of the two 
reference kinematical variables showed in Fig. 1b, that are crack opening w1 and sliding 
v1, and subsequently transferred into the global coordinate system x-y.  

Similarly to the uncracked stage, the stress field in SFRC between two adjacent 
cracks can be expressed as the sum of the stresses in the two materials, that are concrete 
and steel (Fig. 2), which can be evaluated as the product between the correspondent 
stiffness matrices, [Dc] and [Ds], and their strains, {εc} and {εs}. The two matrices are 
simply derived from the corresponding ones calculated in the uncracked stage, by 
degrading their terms through a proper damage coefficient; as a consequence, the fibre 
contribution in the intact material between cracks is still neglected, and it is only 
explicitly considered in the evaluation of the crack stiffness sub-matrix [Dc,cr1], as 
explained in the following. It should be also pointed out that in this stage the hypothesis 
of perfect bond is no longer valid, and consequently the two strain vectors, {εc} and 
{ εs}, cannot be assumed coincident with each other. Anyway, for the sake of simplicity, 
the steel strain {εs} has been assumed coincident with the total average strain {ε}, due 
to the limited difference between them.  
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Figure 2. Sketch of the uncracked SFRC and of the crack as "materials" in series. 
 

As regards the stress field in the crack, it can be determined once again as the 
product between the crack stiffness matrix, [Dcr1], and the strain vector of the fracture 
zone, {εcr1}, having assumed that: 
 

[Dcr1] = [Dc,cr1] + [Ds,cr1]    (1) 
 

by separately considering the contributions related to SFR concrete and ordinary steel 
bars crossing the cracks. The first one accounts for aggregate bridging and interlock, as 
well as for fibre bridging and prestress, and can be expressed in the local coordinate 
system of the crack in the following form: 
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The resistant mechanisms associated with aggregates and fibres are evaluated 
independently, following a micro-mechanical approach originally proposed by Li et al. 
[3]. More in details, the aggregate bridging action is expressed as a function of crack 
opening w1, through an empirical relation (reported in [15]) calibrated on the basis of 
several experimental data, and it is taken into account through the bridging coefficient 
cb1. Fibre action is instead represented through the coefficient cf1, which is derived from 
the following relations: 
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being ε1 = w1/am1 and γ12 = v1/am1, while σf1 and τf12 are the normal and tangential 
components of the total fibre contribution σf, according to Fig. 1b, which is in turn 
calculated by adding the bridging effect developed by the fibres themselves in the 
fracture region, σb, and the fibre prestress that is present before crack formation, σ0

ps: 
 

( ) ( ) ( )1
0
ps1b1f sss σ+σ=σ .          (5) 

 

As can be seen, all these terms have been expressed as a function of the total 
displacement across the crack, s1, representing the resultant of crack opening w1 and 
sliding v1, according to Fig. 2b. On concrete side, the stiffness matrix [Dc,cr1] (reported 
in Eq. 2) also includes the aggregate interlock effect, evaluated according [17], through 
the coefficients ca1 and c01, whose expression can be found in [15]. 

As regards the sub-matrix [Ds,cr1], related to the resistant mechanisms due to steel 
bars crossing the crack (that is tension stiffening and dowel action, see Eq. 1 and Fig. 
2), it can be obtained by summing up the contribution of each i-th reinforcement layer: 
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which is first evaluated in its local coordinate system xi-yi, according to [15], and then 
transposed into the global one. Finally, the global stiffness matrix of the SFRC cracked 
element can be obtained from previous equations, by simply deducing the two strain 
vectors {εc} and {εcr1} from the two equilibrium conditions (respectively relative to the 
intact material between cracks and to the fracture zone), and substituting their values 
into the compatibility equation, as reported in [15]. 
 
Implementation of the model into a FE procedure 
The above described stiffness matrices have been implemented into a commercial FE 
code (ABAQUS [18]) in the form of a "user-material" subroutine, in order to perform 
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numerical analyses on different SFRC structural elements, able to account for both 
material non-linearity and fibre resistant contribution in the post-cracking stage.  

At each loading increment (or iteration within a fixed increment) and for each single 
element in which the structure is subdivided, the total strain vector {ε} calculated from 
the adopted FE code is passed to the user-material subroutine. Following the above 
described procedure, these strain values are used for the evaluation of the proper 
material stiffness matrix depending on the current cracking stage and, known it, for the 
determination of corresponding stresses, which are then passed back to the FE code for 
the execution of external convergence checks. On this point, it should be reminded that 
the proposed model is based on a strain decomposition scheme in the cracked stage; as a 
consequence, it is also necessary to check the convergence on total strain through an 
internal iterative procedure, like the one summarized in the flow chart reported Fig. 3.  

 
for the k-th external iteration and the j-th internal one 
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Figure 3. Flow chart of the internal iterative procedure to obtain strain decomposition. 

 
 

COMPARISONS WITH EXPERIMENTAL RESULTS 
 
SFRC beams in bending  
In order to verify the effectiveness of the proposed procedure, an experimental program 
carried out on SFRC beams in bending has been first considered [8]. More in details, 
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four point bending tests have been performed on three identical specimens, produced 
with a C20/25 concrete and DRAMIX-RC-80/0.60-BN fibres, characterised by a length 
of 60 mm, a diameter equal to 0.75 mm, and a fibre dosage equal to 30 kg/m3. The 
specimens were under-reinforced, since the provided reinforcement ratio ρ has been 
kept equal to 0.00315. In addition, a transversal reinforcement constituted by 8 mm 
stirrups, with 100 mm spacing, has been included in the beams. More details about 
reinforcement distribution and material properties can be found in [8] and are partly 
summarised in Fig. 4, where also geometrical details of the test are indicated.  
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Figure 4. Sketch of the loading arrangement adopted during the experimental test and 

beam cross-section details [8] (dimensions in mm). 
 

Taking advantage of the symmetry of the problem, only one half of the SFRC beam 
has been modelled, by adopting a FE mesh constituted by quadratic, isoparametric 8-
node membrane elements with reduced integration (4 Gauss integration points).  
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Figure 5. Comparisons between numerical and experimental [8] results, in terms of: (a) 

applied load vs. deflection at midspan; (b) crack pattern at failure. 
 

The main comparisons between experimental and numerical results have been 
provided in terms of load-deflection response, as well as crack pattern at failure, and are 
summarised in Fig. 5. As can be observed, the adopted procedure is able to correctly 
predict the experimental failure load, even if the maximum achieved deflection at 
midspan is slightly underestimated. As regards the crack pattern at failure, both the 
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experimental and numerical responses are mainly interested by the appearance of 
vertical flexural cracks in the central part of the SFRC beam, which are characterised by 
an increasing extension, as well as by greater crack widths as the applied load increases. 
 
SFRC beams in shear 
The attention has been then focused on three SFRC beams without ordinary transversal 
reinforcement and subjected to shear, which are part of a more extensive experimental 
program recently carried out at the University of Brescia [14].  
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Figure 6. Sketch of the loading arrangement adopted during the experimental test and 

beam cross-section details [14] (dimensions in mm). 
 

The considered specimens are characterised by the same geometry (reported in Fig. 
6) and by the same longitudinal steel ratio ρ, which has been set almost equal to 0.01, 
while a different amount of steel fibres has been added to the concrete mix. More in 
details, steel fibre dosage has been respectively set equal to 0 (plain concrete 
"reference" specimen), 50 and 75 kg/m3, while the type of reinforcement has been kept 
the same, that is to say hooked end fibres, with a length of 50 mm, a diameter of 0.8 mm 
and a tensile strength equal to 1100 MPa. A normal strength concrete (fck of about 
30 MPa) has been used for beam casting. The three considered beams have been tested 
under a three point loading system, providing a shear span-to-depth ratio a/d almost 
equal to 3, as indicated in Fig. 6. Further details about specimen configuration, material 
properties and test arrangement can be found in [14]. 

Also in this case, the FE mesh has been realised by following the same criteria 
already described for the simulation of the bending test. The main comparisons between 
experimental and numerical results have been again provided in terms of applied load 
vs. deflection under the loading point and are reported in Figs. 7a-c. As can be 
observed, the proposed model is able to correctly model the enhanced post-cracking 
behaviour of SFRC specimens with respect to the reference one made of plain concrete 
(indicated as PC), since the corresponding curves are not only characterised by an 
higher peak load, but also by a different failure mode, which passes from shear to 
flexure, with a clear yielding of the longitudinal reinforcement and a rather significant 
ductility especially for specimen FRC50 (with 50 kg/m3 of fibres). Figure 7d also shows 
the numerical crack pattern at failure for specimens PC and FRC50; as can be seen, the 
addition of fibres determines a stable propagation and progressive development of 
several cracks with a reduced spacing, so leading to a more ductile behaviour, with the 
development of vertical deflections that are significantly greater than those obtained for 
the reference plain concrete specimen. This latter is instead characterised by the 
spreading of a main shear crack, which is immediately followed by element failure. 
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Figure 7. Comparisons between numerical and experimental [14] results, in terms of 
applied load vs. deflection at midspan for: (a) plain concrete specimen PC and for SFRC 
specimens with (b) 50 kg/m3 (FRC50) and (c) 75 kg/m3 (FRC75) amount of fibres; (d) 

numerical crack pattern at failure for PC (above) and FRC50 (below) specimens. 
 
 
CONCLUSIONS 
 
In this work, an extension of 2D-PARC constitutive model to SFRC elements subjected 
to plane stresses is presented, by including a realistic constitutive law [3] able to 
account for fibre contribution in the post-cracking stage. After its implementation into a 
FE code, the proposed model has been applied to the analysis of SFRC beams subjected 
to bending and shear, and its effectiveness has been proved through comparisons with 
some experimental results available in technical literature [8,14]. The good agreement 
between numerical provision and physical reality confirms the need to adopt more 
complex models - like the one presented, based on fracture mechanics concepts - in the 
design of these structural elements. Further validations of the proposed approach will 
also concern SFRC shear critical beams with and without stirrups, in order to 
investigate the effective possibility of using steel fibres as minimum shear 
reinforcement. 
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