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ABSTRACT. This paper deals with the numerical calculatiorstess intensity factors
(SIF) of surface cracks under Mode | conditions @&advalidation by crack propagation
experiments on round bars with cyclic tension aedding loading. The SIFs were
calculated numerically from energy release rateubg of the MVCCI-method. In order
to determine the SIFs for the intersection pointextrapolation is used. Furthermore
the intersection points’ singularity of the strefgsld and the area of influence were
investigated numerically on single edge notchedcigpens with varying crack
geometries. It was possible to validate the nunaégalculation of SIFs and to deduce
guidelines for the extrapolation. Moreover, the atgporopagation experiments were
used to check the crack geometry and to investitiegee dependencies e.g. of stress
ratio and overloads. As has been proved semi-adfptcrack geometries appear
independent of the stress ratio and overloads ag las the assumptions of the linear
elastic fracture mechanics are fulfilled. Also, @rack front intersects the surface in a

certain angle where the~[7-singularity of the stress field is nearly fulfile

INTRODUCTION

Efficent residual lifetime calculation of crackettustures can be done by analytical
crack propagation simulations. The knowledge ofdfaek path and the related solution
of the stress intensity factor (SIF) is a basiaunement for the simulation. In order to
achieve SIFs numerical simulations are performed ley use of the Finite Element
Method. Uncertainties of the calculated SIFs refuoitn the methods character as an
approximation solution and the specific featuréhef crack front surface point.

In literature [1, 4, 7, 11] it is well known thdte 14/r-singularity of the stress field
at the intersection point of the crack front and #tructure surface is not fulfilled in
general whereby the conventional SIF looses itslabty. Pook [4] has shown that
the stress fields singulari# depends on the Poisson’s ratiand the anglg between
the crack front and the surface of the structurg. fr an anglg = 90° and a Poisson’s
ratiov = 0,3 Benthem [1] calculated analytically a siragitlyy 1, of -0,452. Furthermore
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Pook [4] stated and other authors [7, 9] almogtsétid numerically and experimentally
for plane surfaces the existence of an certainegfigl

Bs= arctar(%z) (1)

where the Wr-singularity of the stress field is fulfilled. Hegd[7] even pointed out
that for naturally curved crack fronts all pointk the crack front satisfy the -
singularity. Furthermore Hutar et al. [11] estimale influence of the intersection
points area of middle tension specimens by numlesicaulation. He pointed out for=

0,3 that the surface influence on the singularitthe stress field decays in a distance to
the surface of about 20 % of the half specimerktiass.

In order to determine SIFs for the intersectiompsbme authors [6, 14] make use of
an extrapolation. Thereby the SIFs in some distémoee the surface are fitted by e.g. a
quadratic polynomial function [6]. This function s/éitted e.g. by Shin and Cai [6] to
the SIFs which ranges from 20 — 100% of the hal€kifront length.

A basic assumption for the analytical crack propiagasimulation is that the crack
front exhibits an elliptical geometry. Serveral laus [2, 5, 8] have attested the
development of elliptical crack fronts by crack jpagation tests. However, in the
numerical crack propagation simulations performgdHou [12] deviations from the
elliptical form are reported and explained by thec& closure effect.

Crack propagation experimentson round bars

The crack propagation tests were performed on dmaatnd steel (34CrNiMo6) bars
with a diameter of 20 mm. The specimens were loddedyclic tension or bending
with constant amplitude. To investigate the develept of the crack geometry beach
marks, which were generated by single overloadse weeasured under a traveling
microscope. To initiate a crack the specimens wetehed by micro bore holes, Figure
1. The crack length was measured using the DC patairop method. The required
calibration curve was obtained from pretests.

Table 1 gives an overview of the variants of thEgened crack propagation tests.lIt
should be noted that a dye was used for the tagitsaw overload ratio of 1 to deduce
paint marks alternative to the beach marks.

Table 1. Overview of the performed crack propagaérperiments

Stress |Overload ratio = 1,8 Overload ratio = 1
ratio Bending Tension | Bending Tensio
-1 - 4 - -
0,1 18 6 - 3
0,5 2 - - -
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The analysis of the crack fronts include the maagusf the beach marks, black curves
in Figure 1, and check their elliptical form bytifig ellipse, red curves, to them. In

some tests the beach marks deviate from the ebipfiorm, see Figure 1 b. It could be
observed that these deviations were caused byhighyoverloads which lead to large

plastic zones especially in the surface regiorhefdrack front. Therefore a retardation
of the crack propagation occurs in the surfaceoreglhe size of the plastic zones were
estimated by FE simulations and showed a good agmeewith analytical models. So

the numerical investigations from Hou [12] could denfirmed. For all further tests a

limit for the maximum SIFKnax < 2.000 N/mn{? was applied.
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Figure 2. Crack front geometries of all beach markd SIF solution
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The main result of the crack propagation experiseésthe development of the crack
geometry. In Figure 2 the aspect ratio of the beaeks are shown over the crack
depth. It can be observed that the developmenhefctack geometry depends on the
type of loading. Moreover it can be ascertained the development of the crack
geometry is independent of stress ratio and oventato.

Also the angle between the crack front and theaserfof the structure at the
intersection point is investigated experimentaiigure 3. It becomes obvious that the
angles exhibit a linear dependence of the crackhdéfhe analytical value for plane
surfaces calculated by Eq. (1) amounts about 108& mean value of all angles
exceeds the analytical value about 8%. The devedopraf the intersection angles is
almost the same for tension and bending loadingo Adlotted in Figure 3 is the
deviation between numerically calculated and exti@ed SIF solutions foa/D = 0,1.
As can be seen, the deviations increase for cracks which differ from the naturally
crack front obtained from the crack propagations.tet
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Figure 3. Crack front angle at the intersectiompof all beach marks and crack
geometries from SIF solution

The SIFs for Mode | were calculated from energgasek rates

K*=G-E' with E’={
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by use of the plane strain conditiosis the elastic modulus andthe Poisson’s ratio.
As mentioned, the SIF at the intersection point easulated by an extrapolation of the
SIF along the crack front, see the next chaptee. Aimerical calculation of the energy
release rates were performed with the FE-softwaB8CMlarc/Mentat 2007 by use of
the MVCCI-method [3, 10]. For the discretizationdar hexaeder elements were used.
The special requirements of the mesh for the usleeoMVVCCI-method are investigated
in [14]. After this the element size near the cr&ckt was set abow/20. Also double
symmetry was used, see Figure 4.

In addition to the crack propagation tests numeiroaestigations of the thickness of
the boundary layer effect were performed to dedyaeelines for the extrapolation.
These investigations were carried out on a standandpact tension specimen (CT)
with a thicknessof t = 10 mm using three-dimensional finite element wdations,
Figure 5 a). A crack witla = 27,5 mm and a straight crack front is assumeglirei 5
b). Thus the ratio of crack length to widihthe specime@a/w amounts to 0,38.
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Figure 5. a) CT-specimen, b) Definition of the &r&ont geometry
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Due to the symmetry only one-quarter of the speninsemeshed with twenty-node
isoparametric elements. Near the crack front ug distance of = 0,5 mm and within a
layer thickness of 0,5 mm near the free surfacerg fime mesh with an element size of
0,01 mm is used. Towards the middle plane of trexispen withz't = 0 the element
size is gradually increased in through-thickneseadtiion up to a size of 0,1 mm. The
FE-simulations are carried out under the assummti@linear-elastic material law with
E = 210.000 MPa and=0,3.

The displacement field near the crack front canwbiéen as superposition of two
terms

wy = A;j(9.2) - " + By(p,0) - K’ 3)

based on the known cylindrical singularity for thesses inside the body and an
unknown vertex singularity in spherical coordinateth the exponent independent of

z [14]. The FE-analyses are evaluated with regarthéocrack face displacementsyin
direction in a cylindrical coordinate system. Foreey plane #/t= const.) these
displacements in the vicinity of the crack fropt< 180°) can be expressed as follows:

u(r) = C-r's + D-ritl, (4)
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Figure 6. Influence of the vertex singularitpn the exponeni, for different layers

For the numerical evaluation of the exponeptit is advantageous to consider an
additional second term of higher order in Eq. (4)the free surface the exponéptis
equal the vertex singularity exponénénd tends towards 0,5 in the middle plane of the
specimen where the second term of Eq. (3) becomes. ZThe thickness of the
boundary layer influenced by the vertex singulaistgefined as the region near the free
surface in whichi, differs from the classical value 0,5. The exporigié determined in
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different layers &< z/ t<0,5 after Eq. (4) by a regression analysis with pinegram
MATLAB from the computed displacements in a rang®®2 mm<r < 1,225 mm.
The exponent varies along the specimen thicknasg lotose to 0,54, = 0,5025) in the
middle plane of the model, Figure 6. This is coasd as a sufficient agreement with
the theoretical value. In the free surface the ealtithe exponent i%, = 0,5495. The
associated exponent =4, — 1 = -0,4505 is in very good agreement with treotetical
value from Benthem [1]. For a layeft < 0,39 the influence of the vertex singularity
on the exponent, is almost decayed, Figure 6. So the boundary yekness is about
22 % of the half specimen thickness which is indyaocordance to Hutar et al. [11].

Validation of the numerical SIF calculation

The validation of the SIF calculation occurs bylgteal crack propagation simulations
of the tests. Therefore the software NASGRO 6.02 wsed. The required SIF solution
for tension and bending includes six crack depdaching from 0,05 a/D < 0,7 and
six aspect ratios reaching from Osla/b < 1,25 with b being the half axes of the
elliptical crack. The SIFs have been calculatedtha deepest point and the surface
point of the crack front and entered in NASGRO.eAftefining of an initial crack
geometry the crack propagation for bending andidensoading is calculated by
NASGRO depending on the SIF solution. As an initedck deptha/D = 0,05 was
choosen with the related aspect ratio deduced thencrack propagation tests, Figure 2.

As mentioned an extrapolation is used to deriveSHes at the intersection point.
Therefore a polynomial function is fitted throudtetSIF in a special area of the crack
front. The parameters of the extrapolation arediterp (2, 3, 4) of the polynomial
function as well as the beginnidgand ending: of the regression area. The beginning
varies from 0< 0 < 0,3 the ending from 0,8 ¢ < 1 of the half crack fronts’ normalized
arc length. For all combinations of the 3 paransetanalytical crack propagation
simulations were performed. Furthermore the deweti between the/D-al/c-curve
from the analytical crack propagation simulatiod #ime beach marks were calculated to
find the optimum parameters of the extrapolation.

It could be observed that all parameter combinatitgad to aspect ratios in the
analytical crack propagation simulation which anealler than those from the crack
propagation tests. By multiplying the SIFs at theisection point with a valug
between 0,% x < 0,95 the agreement between simulation and testases. Fon =
0,95 the development of the crack geometry of thmilsition is shown in Figure 7 for
bending and tension loading. On the one hand themdation which leads to the
minimum deviations between simulation and experimems used for the SIF
calculation of the intersection point and on thieeothand the direct numerical values
were used. It is obvious that the extrapolatiordseto a better accordance between
simulation and experiment. The parameters of thengpn extrapolation argp = 2,6 =
0,275 and: = 1. So the parameters are in good agreementtinoge from Shin and Cai
[6]. Furthermore the regression area is independetite boundary layer effect which
decays about 22 % from the surface, as could besdroumerically.
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Figure 7. Development of crack geometry from experit and simulation

Conclusion

The crack propagation tests showed the formatioseohi-elliptical surface cracks,

which crack geometry depends on load type and depandent of stress ratio and
overload ratio. The results demonstrate that ietd#ign angles are not constant for
curved surfaces as it is observed for plane susfalee crack propagation test could be
used for the validation of the numerical SIF cation. Based on analytical crack
propagation simulations of the tests and the nurakinvestigations concerning the
boundary layer thickness guidelines for the extiajm of the SIF at the intersection

point were deduced.
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