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ABSTRACT. One of the main interests of fracture mechanics is the prediction of
crack propagation. While problems for plane scenarios are widely discussed in the
literature, for real-world applications more interesting but still a hard problem is the
fully three-dimensional case. Mathematical models for crack prediction are based on
the asymptotic behavior of the displacements at the crack front, which is of well-
known square-root type also in three dimensions. In this contribution we present
the asymptotic decomposition of the displacements near an arbitrary curved crack
front. By exploiting the structure of this expansion a representation of the change
of potential energy caused by a small elongation of the crack surface is derived using
methods of asymptotic analysis.

INTRODUCTION

In this contribution we present ideas how fatigue crack growth in 3-dimensional
anisotropic structures can be predicted using the Griffith’ energy principle: A
crack only starts to propagate if energy can be released. The total energy is com-
posed from the surface energy and the potential energy U, the latter is the difference
of the elastic energy and the work performed by external forces. Since the work of
Irwin the change of potential energy caused by a straight elongation of a crack in
an isotropic two-dimensional homogeneous structure can be expressed in quadratic
terms of the stress intensities at the crack tip. This result was generalized in the last
decades to anisotropic and also inhomogeneous materials using methods of asymp-
totic analysis by many other authors [1, 2]. With the energy release rate at hand,
quasi-static crack propagation can be calculated in linear elastic materials. Here,
we generalize the ideas from [3] for a plane crack to a nearly arbitrary smooth crack
geometry. For this, we introduce local coordinates at the crack front and give the
asymptotic behavior of the displacement field. In local coordinates, we expand the
results from [1] for two-dimensional problems and derive an asymptotic representa-
tion of the change of potential energy caused by a small elongation of the crack.
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FORMULATION OF THE PROBLEM

Let G ⊂ R3 be a solid with polygonal boundary. We consider the problem of
three-dimensional linear elasticity theory in the domain Ω := G \ Ξ, where Ξ (the
crack) is a smooth two-dimensional sub-manifold of R3 with smooth boundary Γ :=
∂Ξ (the crack front) placed completely inside of G. We assume, that Ξ is simply
connected and that the crack front Γ is a smooth curve. For a given self-balanced
external loading p = (p1, p2, p3)> the displacement field u = (u1, u2, u3)> fulfills the
equilibrium equations

−∇ · σ(u;x) = 0, x ∈ Ω,

σ(u;x) · n(x) = 0, x ∈ Ξ+ ∪ Ξ−,

σ(u;x) · n(x) = p(x), x ∈ ∂Ω \ Ξ±,

(1)

where n = (n1, n2, n3)> is the outward normal vector (> means transposition). With
Ξ+ and Ξ− we denote the upper and lower surfaces of the crack, considered to be
traction-free. The term u · n = uini denotes the inner product in the Euclidean
space (with sum convention). The strain tensor with the Cartesian components
evaluated for the displacement field at point x, εkl(u;x) = 1

2

(
∂xluk(x) + ∂xkul(x)

)
,

k, l = 1, 2, 3, is related to the stress tensor by Hooke’s law:

σij(u;x) =
3∑

k,l=1

aklijεkl(u;x), i, j = 1, 2, 3.

The tensor a =
(
aklij
)
contains the elastic moduli and is symmetric and positive.

ASYMPTOTIC DECOMPOSITION AT THE CRACK FRONT

Local curvilinear coordinates.
In order to derive the asymptotic decomposition of the displacement field near the
crack front, we introduce local coordinates. In a (small) neighborhood T around
the crack front Γ local curvilinear coordinates y = (y1, s, y2)> of a point P ∈ T are
defined by the transformation

P = Θ(y) = x(s) + y1n(s)− y2b(s) , (2)

where t, n and b = t× n are the tangent, (outer) normal and binormal unit vectors
on Ξ at point x(s) with arc length s on the crack front, see figure 1.
Choosing a local positive coordinate system,

e1(s) = t(s), e2(s) = −n(s), e3(s) = −b(s),
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Figure 1: Point P in local coordinates near the crack front Γ.

the Frenet-Serret formulas from differential geometry [4] lead to

dt

ds
(s) = −κ(s)n(s),

dn

ds
(s) = κ(s)t(s) + τ(s)b(s),

db

ds
(s) = −τ(s)n(s),

where κ(s) is the curvature and τ(s) is the torsion of the curve Γ (the crack front)
at arc length s. A covariant basis {g1,g2,g3} of (positive orientated) curvilinear
coordinates at a point Θ(y) = x ∈ T is given by gj(y) = ∂yjΘ(y), here

g1(y) = n(s), g2(y) =
(
1 + y1κ(s)

)
t(s) + τ(s)

(
y1b(s) + y2n(s)

)
, g3(y) = −b(s).

The components gij(y) := gi(y) · gj(y) of the Riemannian metric tensor are

(
gij(y)

)
=

 1 y2τ(s) 0

y2τ(s)
((

1 + y1κ(s)
)2

+
(
y2

1 + y2
2

)
τ(s)2

)
−y1τ(s)

0 −y1τ(s) 1

 .

The contravariant basis, defined by the relation gi · gj = δij with the Kronecker
symbol δij, can also be explicitly calculated:

g1(y) = n(s)− y2τ(s)√
g(y)

t(s), g2(y) =
1√
g(y)

t(s), g3(y) = −b(s) +
y1τ(s)√
g(y))

t(s)

where
√
g(y) =

(
1 + y1κ(s)

)
is the Jacobian, see e.g. [5]. Because Ξ is considered

to be smooth, local coordinates are uniquely defined at any arc length s. Neverthe-
less, the determinant

√
g(y) of the Jacobian matrix vanishes at y1 = − 1

κ(s)
and the

transformation (2) is valid only in a possibly small vicinity around the crack front.
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The displacement field u : Ω→ R3 with (smooth enough) components ui can be
transformed to curvilinear coordinates by the defining relation

u(x) = ui(x)ei = ûi(y)gi(y) for all x = Θ(y), ‖y′‖ � 1.

Vector fields in global Cartesian coordinates x = (x1, x2, x3)> are related to
the standard unit basis of R3:

{
e1, e2, e3

}
. While this basis is fixed in R3, the

displacement field can be identified by the vector of its Cartesian components
u(x) = (u1(x), u2(x), u3(x))> at any point x ∈ R3. This is no longer true in curvilin-
ear coordinates, where the functions ûi(y) represent the covariant components of the
displacement vector over the contravariant basis {g1(y),g2(y),g3(y)} which varies
with Θ(y) = x ∈ T . We identify the vector û = (ûi) with the vector of its covariant
components whereas û := ûig

i is the (physical) displacement vector, see e.g. [5] for
more details.

We formulate the equilibrium equations (1) in curvilinear coordinates. The
derivatives of a vector field in curvilinear coordinates are defined by the relations

∂jvi(x) =
(
v̂k‖l[g

k]i[g
l]j

)
(y), x = Θ(y), [gk]i := gk · ei ,

(always with sum convention), the covariant derivative is defined by

v̂i‖j := ∂̂j v̂i − Γpij v̂p with the Christoffel symbols Γpij := gp · ∂igj.

Remark, that the choice of the basis as shown in figure 1 specifies the enumeration
of derivatives as follows:

∇yv̂ =
(
∂̂1v̂, ∂̂2v̂, ∂̂3v̂

)
, ∂̂1v̂ =

∂v̂

∂y1

, ∂̂2v̂ =
∂v̂

∂s
, ∂̂3v̂ =

∂v̂

∂y2

.

The Christoffel symbols Γpij of the second kind can be expressed in terms of the
metric tensor by Christoffel symbols of the first kind,

Γijq :=
1

2
(∂jgiq + ∂igjq − ∂qgij) ,

by the relation Γpij = gpqΓijq where (gpq) = (gij)
−1. The (covariant) components of

the strain tensor in curvilinear coordinates are defined by the relation

ε̂ij(û; y) := εkl(u;x)[gi(y)]k[gj(y)]l, ε̂ij(û; y) =
1

2

(
ûi‖j + ûj‖i

)
, i, j = 1, 2, 3,

and similar the (contravariant) components of the stress tensor are

σ̂ij(û; y) := σkl(u;x)[gi(y)]k[g
j(y)]l , i, j = 1, 2, 3.
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In curvilinear coordinates Hooke’s law reads:

σ̂ij(û; y) = σkl(u;x)[gi(y)]k[g
j(y)]l = apqkl εpq(u;x)[gi(y)]k[g

j(y)]l

= apqkl ε̂mn(û; y)[gm(y)]p[g
n(y)]q[g

i(y)]k[g
j(y)]l =: âmnij (y)ε̂mn(û; y)

Rewriting the divergence of the stress tensor in curvilinear coordinates, the equilib-
rium equations (1) near the crack front read

−σ̂ij(û; y)‖j = 0, x = Θ(y) ∈ T, σ̂ij(û; y)n̂j = 0, x = Θ(y) ∈ Ξ±, (3)

with the components σ̂ij‖j := ∂̂jσ̂
ij + Γipjσ̂

pj + Γjjqσ̂
iq for i = 1, 2, 3, see [5] for more

details on curvilinear coordinates.

Asymptotic expansion at the crack front.
From nowadays classical results it is known, that also in three dimensions the dis-
placement field has an asymptotic expansion of square-root type at the crack front:
û ∼ r1/2Φ(ϕ; s), where

(
r cos(ϕ), r sin(ϕ)

)>
= y′ are polar coordinates in the y′-

plane at arc length s (see e.g. [4, 6, 7] and the literature cited there). If we rewrite
the elasticity equations (3) in operator notation,

L (y,∇y)û(y) = 0, x = Θ(y) ∈ T, N (y,∇y)û(y) = 0, x = Θ(y) ∈ Ξ±, (4)

we can expand the elasticity operator into a series:

{
L (y,∇y),N (y,∇y)

}
=
∞∑
k=0

{
rk−2Lk(ϕ, ∂ϕ, r∂r, s, ∂s), rk−1N k(ϕ, ∂ϕ, r∂r, s, ∂s)

}
.

The first operator L0(ϕ, ∂ϕ, r∂r, s, ∂s) = L0(ϕ, ∂ϕ, r∂r, s) = L 0(∇y′ , s) does not in-
volve derivatives of the arc length and is a homogeneous second-order operator with
constant coefficients, namely the elastic moduli transformed to curvilinear coordi-
nates at arc length s at the crack front. Exploiting (4), longer calculations show,
that the asymptotic decomposition of the displacement field reads

û(y) = r1/2

3∑
j=1

Kj,1(s)Φ0
j,1(ϕ) + r3/2

3∑
j=1

(
Kj,1(s)Φ1

j,1

(
ln(r), ϕ

)
+ ∂sKj,1(s)Φ2

j,1

(
ln(r), ϕ

)
+Kj,3(s)Φ0

j,3(ϕ)

)
+O

(
r2
)
,

where Kj,1(s) are the classical stress intensity factors (SIFs) and Kj,3(s) higher-
order coefficients. The functions r1/2Φ0

j,1 are solutions of the pure two-dimensional
homogeneous problem

L0(ϕ, ∂ϕ, r∂r, s)r
ΛΦ(ϕ) = rΛL0(ϕ, ∂ϕ,Λ, s)Φ(ϕ) = 0, ϕ ∈ (−π, π), (5)
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N 0(±π, ∂ϕ, r∂r, s)rΛΦ(±π) = rΛN 0(±π, ∂ϕ,Λ, s)Φ(±π) = 0. (6)

Similar (non-homogeneous) equations can be found for the higher-order terms [6].
Besides energy solutions, there exist singular solutions r−1/2Ψ of problem (5) - (6).
In order to formulate a fracture criterion the first pairs of this power-law solutions,

U0
j,1(y′) := r1/2Φ0

j,1(ϕ), V 0
j,1(y′) := r−1/2Ψ0

j,1(ϕ), j = 1, 2, 3

have to be normalized in a mechanical reliable sense. Due to [8], the energy solutions
can be chosen to

1

2

[
U0

1,1

]
(−y1) = Cr1/2e3,

1

2

[
U0

2,1

]
(−y1) = Cr1/2e1,

1

2

[
U0

3,1

]
(−y1) = Cr1/2e2

where [u](y1) := u(y1,+0)− u(y1,−0) is the jump over the crack and C a material
constant. Using this so-called strain basis of power-law solutions, the first SIF is
related directly to opening of the crack, the second to sliding of the crack surfaces in
the y′-plane and the third to out-of-plane sliding of the crack surfaces. The singular
solutions can be chosen in such a way, that∫ π

−π
N 0(1/2)Φ0

j,1(ϕ) ·Ψ0
i,1(ϕ)− Φ0

j,1(ϕ) · N 0(−1/2)Ψ0
i,1(ϕ) dϕ = δij, i, j = 1, 2, 3.

where N 0(Λ) := N 0(ϕ, ∂ϕ,Λ, s) [6]. Also in three dimensions SIFs can be calcu-
lated using singular weight functions. There exist solutions ζj of the homogeneous
equations (1) with singular asymptotic behavior at the crack front:

ζ̂j(H; y) = H(s)V 0
j,1(y′) + . . . = H(s)r−1/2Ψ0

j,1(ϕ) + . . . , ‖y′‖ → 0,

and for smooth functions H(s) the following integral representation holds [3, 6]:∫
∂Ω\Ξ±

p(x) · ζj(H;x) dS =

∫
Γ

H(s)Kj,1(s) ds , j = 1, 2, 3. (7)

Griffith’ ENERGY CRITERION

As previously discussed, crack propagation can be predicted using the energy crite-
rion [9, 10]. For this it is necessary to calculate the change of potential energy ∆U
for small crack elongations. Let Ξ(t) be the elongated crack with new crack front

Γ(t) :=
{
x(s) + t

(
h(s) cos

(
ϑ(s)

)
n(s)− h(s) sin

(
ϑ(s)

)
b(s)

)
: x(s) ∈ Γ

}
Here, t ≥ 0 is a time-like parameter and 0 ≤ th(s) � 1 is the length of the crack
shoot in the y′-plane to direction ϑ(s). We assume, that h and ϑ are smooth functions
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of the arc length s. To calculate the change of potential energy for small th(s)� 1,
we use the method of matched asymptotic expansions [10]. The principle idea is the
following. For a small elongation th(s), the displacement field ut at time t will not
differ too much from the displacement field u = u0 at time t = 0 in some distance
to the crack front Γ(t), hence we approximate ut by an outer expansion

ut(x) ∼ u0(x) + ζ1(a1;x) + ζ2(a2;x) + ζ3(a3;x) + . . .

where the functions aj = aj(t, s) have to be determined. Near the crack front, the
influence of the propagated crack on the solution ut will be more significant and
to detect this at arc length s, we change local coordinates to ξ = t−1y′. Sending
t → 0 the outer boundary moves to infinity and very close to the crack front we
approximate the displacement field by an inner expansion

ut
(
t−1y′, s

)
= ut(ξ, s) ∼ t1/2w1(ξ, s) + . . . .

For any arc length s the functions w1(·, s) are solutions of the homogeneous elasticity
problem in the plane with a semi-infinite kinked crack (compare to (4)):

L 0(∇ξ, s)w
1(ξ, s) = 0, ξ ∈ Ωh

∞, N 0(∇ξ, s)w
1(ξ, s) = 0, ξ ∈ ∂Ωh

∞,

where Ωh
∞ := R2 \

(
Ξ∞ ∪ Υh

(
ϑ(s)

))
is an unbounded domain with a semi-infinite

crack Ξ∞ := {ξ : ξ1 ≤ 0, ξ2 = 0} and crack shoot Υh

(
ϑ(s)

)
:=
{
ξ : 0 < ξ1 ≤

h(s) cos
(
ϑ(s)

)
, ξ2 = ξ1 tan

(
ϑ(s)

)}
. This is a pure two-dimensional problem depend-

ing on s. Scaling ξ := h−1ξ, we arrive at a problem in a domain with a kink of fixed
length one. Here, we can use the results in [1, 2]: There exist solutions with singular
asymptotic decomposition at infinity:

ηj(ξ) = U0
j,1(ξ) +

3∑
i=1

Mi,j

(
ϑ(s);h

)
V 0
i,1(ξ) + . . . , |ξ| → +∞. (8)

and shown in [2, 10] there holds

Mi,j(ϑ;h) = −h1/2
∑
±

(∫
Υ±(ϑ)

ηi(ξ) ·N 0(∇ξ)U
0
j,1(ξ) dS

)
=: h1/2Mi,j(ϑ).

Inner and outer expansion approximate the same solution ut only in different regions
and must coincide for small |y′| and large |ξ|. Both approximations have asymp-
totic decompositions for r → 0 and |ξ| → +∞, respectively, in terms of power-law
solutions. Rewriting the decomposition (8) in local coordinates, we find

t1/2w1(ξ; s) =
3∑
j=1

Kj,1(s)U0
j,1(y′) + t

(
h(s)

3∑
i,j=1

Kj,1(s)Mi,j

(
ϑ(s)

)
V 0
i,1(y′)

)
+ . . . .
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Matching the decompositions of the inner and outer expansions, both coincide if

aj(s) := h(s)
3∑
i=1

Ki,1(s)Mi,j

(
ϑ(s)

)
.

With Clapeyron’s theorem and inserting the outer expansion, the change of po-
tential energy can be calculated to

∆U = U(Ξ(t))−U(Ξ(0)) = −1

2

∫
∂Ω

p(x) ·
(
ut(x)− u0(x)

)
ds

= −1

2
t

(
3∑
j=1

∫
∂Ω0

p(x) · V j,1
(
aj,1;x

)
ds

)
+ . . .

= −1

2
t

(∫
Γ

h(s)

(
3∑

i,j=1

Ki,1(s)Mi,j

(
ϑ(s)

)
Kj,1(s)

)
ds

)
+ . . . .

This is a generalization of the results in [1, 2, 3] to the fully three-dimensional case
with nearly arbitrary crack geometries.
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