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ABSTRACT. This paper shows the evolution of the surface crack front in round bars 
constituted of different materials (determined by the exponent m of the Paris law), 
subjected to fatigue tension loading (with free ends) or fatigue bending loading. To this 
end, a numerical modeling was developed on the basis of a discretization of the crack 
front (characterized as an ellipse) and the crack advance at each point perpendicular to 
such a front, according to a Paris-Erdogan law, using a three-parameter stress 
intensity factor (SIF). Each analyzed case was characterized by the evolution of the 
semielliptical crack front, studying the progress with the relative crack depth a/D of the 
following three key variables: (i) crack aspect ratio a/b (relation between the semiaxes 
of the ellipse which defines the crack front); (ii) maximum dimensionless SIF; (iii) 
minimum dimensionless SIF. 
 
 
INTRODUCTION 
 
One of the most relevant geometries in the field of fatigue and fracture mechanics 
applied to the structural engineering is a cracked cylinder under tension loading or 
bending moment. As a matter of fact, many structural elements, mainly in civil 
engineering consist of wires, bolts, shafts, cables or other components of cylinder 
shapes under constant or cyclic loading, so that the risk of surface cracking by 
mechanical or environmental actions is not negligible. 

Growth of surface cracks in round bars due to fatigue can be modeled using different 
criteria. Prediction of the 90º intersecting angle of the crack with the surface or the iso-
K criterion along the crack front exhibit small differences in their aspect ratio but both 
lead to a unique fitting [1]. Another criterion is based on the crack growth according to 
the Paris Erdogan law considering the crack advance perpendicular to the crack front, 
assuming elliptic geometry of the crack [2-4], avoiding the shape hypothesis [5,6] or 
using the modified Forman model [7]. 

Characterization of fatigue crack growth, whose crack front has been commonly 
represented as straight, circular or elliptical with centre on the wire surface, necessarily 
implies knowing the dimensionless stress intensity factor (SIF), Y, which makes it 
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essential to discern how it changes along the crack front. The dimensionless SIF has 
been obtained by several authors under different loading conditions (tension, bending 
and torsion) and deducted from different procedures: flexibility method, finite element 
method, contour integral analysis, experimental techniques, etc. [2-3,8-12]. 

Fatigue crack growth in round bars with different initial geometry leads to a preferential 
crack path, with an aspect ratio between 0.6 and 0.7 for a relative crack depth close to 0.6 
for tension [2,5], since the geometry of the crack front must be defined with, at least, two 
independent parameters [9]. Growth patterns are closer for a higher value of the Paris 
coefficient m. The crack always tries to propagate towards an iso-K configuration; however, 
it can not be maintained due to the existence of the surface, where the stress has a two-
dimensional state and the singularity of the square root can be lost at the crack tip [5]. 
 
 
NUMERICAL MODELLING 
 
In order to study how a crack propagates on the cross section of a round bar under 
tension or bending cyclic loading (Fig. 1), a computer program in Java programming 
language was developed to determine the geometrical evolution of the crack front.  
 

Figure 1. Cracked bar under tension loading (left) and bending moment (right). 
 
The basic hypothesis of the modeling consisted of assuming that the crack front can be 
modeled as an ellipse with centre on the bar surface [13] and the fatigue propagation takes 
place in a direction perpendicular to this crack front, following a Paris Erdogan law [14], 
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d
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Every elliptical arc of the crack was divided in z segments with exactly the same 

length using the Simpson method to discretize the front. The point on the wire edge was 
not taken into account, since it presents some difficulties regarding the computation of 
the dimensionless SIF (there is a plane stress state on the crack edge). After that, every 
single point was shifted according to Paris Erdogan law perpendicular to the front, so as 
to keep constant the maximum crack depth increment, Δa(max) ≡ max Δai. The advance 
of every front point, Δai, can be obtained from the maximum crack increment and the 
ratio of the dimensionless SIF, 
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The newly obtained points, fitted by the least squares method [13], generate a new 
ellipse with which the process is repeated iteratively until the desired crack depth is 
reached. Due to the existing symmetry, only half of the problem was used for the 
computations (Fig. 2). 

 
 

iΔa

 

Figure 2. Process followed to compute the fatigue crack growth. 
 

The dimensionless SIF used in the computations is that proposed by Shin and Cai [4] 
obtained by the finite element method together with a virtual crack extension technique, 
which depends on the crack geometry a/b, the crack depth a/D and the position of the 
point considered on its front x/h (Fig. 3). 

 

 
Figure 3. Elliptical crack model used by Shin and Cai. 

 
The fitting of the results provides three-parametrical expressions which are defined 

as a function of the coefficients Mijk for tension with free ends [4], 
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and of coefficients Nijk for bending [4]. 
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NUMERICAL RESULTS AND DISCUSSION 
 
The study of the convergence was performed to obtain the number of segments in which 
each ellipse is divided, z, and the value of the maximum crack increase, Δa(max) [15]. 
The geometrical evolution of the crack front, characterized as part of the ellipse, was 
determined for every relative crack depth, a/D, through the aspect ratio, a/b (Figs. 4 to 6). 
These figures plot the evolution of the aspect ratio a/b with crack growth (represented by 
the relative crack depth a/D) for materials with Paris exponent m=2, 3 and 4. 
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Figure 4. Evolution of the aspect ratio a/b with crack growth (represented by the relative 
crack depth a/D) for a material with Paris exponent m=2, starting from different initial 

crack geometries (corresponding to the beginning of each curve, i.e., the point of 
minimum crack depth a/D) under tension loading (left) and bending moment (right). 
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Figure 5. Evolution of the aspect ratio a/b with crack growth (represented by the relative 
crack depth a/D) for a material with Paris exponent m=3, starting from different initial 

crack geometries (corresponding to the beginning of each curve, i.e., the point of 
minimum crack depth a/D) under tension loading (left) and bending moment (right). 
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Figure 6. Evolution of the aspect ratio a/b with crack growth (represented by the relative 
crack depth a/D) for a material with Paris exponent m=4, starting from different initial 

crack geometries (corresponding to the beginning of each curve, i.e., the point of 
minimum crack depth a/D) under tension loading (left) and bending moment (right). 

 
Under fatigue loading, different initial crack configurations tend to a preferential 

path (in a plot a/b-a/D), the convergence (proximity between the curves representing the 
crack advance from different initial crack shapes) being faster for higher values of the 
m-coefficient of the Paris law and greater for the bending loading than for the tensile 
loading. It is observed that results depend on the exponent of the Paris law (Paris 
coefficients), so that for m=2 and m=3 fronts are more distant between them than for 
m=3 and m=4, where the m=3 front is between m=2 and m=4. 

When subjected to bending, growth curves generally present lower values for the 
a/b parameter than under tension, with the exception of the deepest cracks growing 
from an initial crack aspect ratio (a/b)0≅0. If the initial crack is circular (i.e., (a/b)0=1), 
the aspect ratio a/b diminishes with the crack growth, whereas when the initial crack is 
quasi-straight (i.e., (a/b)0≅0), the aspect ratio a/b increases at the beginning and 
decreases later (with the exception of initially deep cracks with (a/D)0≅0.5, where the 
aspect ratio a/b always increases), cf. Figs. 4 to 6. With quasi-circular initial 
geometries the aspect ratio acquires a smaller value for higher values of m, whereas 
for quasi-straight geometries it tends to higher values until crack depths close to half 
the diameter of the round bar, after which this tendency reverses (again with the 
exception of initially deep cracks with (a/D)0≅0.5). In addition, for m=3 and m=4 all 
cracks in the last stage of growth (with relative crack depth close to a/D=0.8) exhibit 
an increasing aspect ratio a/b. 

In Fig. 7, the data obtained in this modelling are compared with those obtained by 
other researchers [2,4,5], for m=3, fatigue tensile loading with free ends and fatigue 
bending loading, and different initial geometries. The basis of the calculation 
followed by all these researchers is the same used in this paper, i.e., Paris Erdogan 
law [14]. Carpinteri [2] performed an advance in only two front points, the centre 
and one close to the round bar surface; while Lin and Smith [5] developed their 
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computation of the dimensionless SIF remeshing every crack advance and adjusting 
afterwards the fronts obtained to circles and ellipses. Shin and Cai [4] did not 
specify the divisions done on the crack front; however, they showed the use of a 
Δa(max) value of D/400. Generally, it can be observed that the results of the present 
paper agree with those of the other researchers until to a value of a/D=0.4. With 
Shin and Cai, there is an almost complete agreement, which seems reasonable 
because the modelling done uses the dimensionless SIF expressions computed by 
them. The difference with the results obtained by Carpinteri can be explained due to 
the variations on their dimensionless SIF values compared to those of Shin and Cai, 
or due to the fact that Carpinteri only used two points (the crack centre and one 
close to the surface bar) in the modelling. 
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Figure 7. Comparison between predictions present model and results  
from other researchers: tension loading (left) and bending loading (right). 

 
Generally, the value of the dimensionless SIF increases when so does the relative 

crack depth for the considered conditions in the research, converging for the different 
geometries of the initial crack (Figs. 8 to 10). For bending loading, the dimensionless 
SIF has a smaller value compared to the bar specimen subjected to tensile loading (even 
from smaller relative crack depths), where the dimensionless SIF under bending is 
roughly one third of that under tension for a relative crack depth of 0.8. Thus the risk of 
catastrophic failure is higher in the case of tensile loading (in relation to the less 
dangerous bending situation) if a local fracture criterion (on the basis of the maximum 
local SIF K along the crack front) is used, considering that fracture takes place when K 
reaches the material fracture toughness KC. 

Maximum values of the dimensionless SIF Ymax (Figs. 8 to 10, left) also show a greater 
convergence than minimum values of the dimensionless SIF Ymin (Figs. 8 to 10, right). 
This fact is more noticeable in bending loading (where the minimum also converges well) 
than in tension loading. The greater the characteristic m parameter of the material, the 
better the convergence of the results for the different initial geometries, both of the 
maximum and the minimum SIF, along the crack front. 
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Figure 8. For m=2 evolution of maximum dimensionless SIF (left)  

and minimum dimensionless SIF (right). 
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Figure 9. For m=3 evolution of maximum dimensionless SIF (left)  

and minimum dimensionless SIF (right). 
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Figure 10. For m=4 evolution of maximum dimensionless SIF (left)  

and minimum dimensionless SIF (right). 
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CONCLUSIONS 
 
According to the Paris Erdogan law, in fatigue propagation the different initial crack 
geometries tend to a unique path on the a/b vs. a/D plot, this convergence (proximity 
between the curves representing the crack advance from different initial crack shapes) being 
faster for higher coefficients m of Paris. With quasi-circular initial geometries, the aspect 
ratio acquires a smaller value for higher values of m, whereas for quasi-straight geometries 
it tends to higher values until crack depths close to half the diameter of the round bar, after 
which this tendency reverses (with the exception of initially deep crack with (a/D)0≅0.5). 

Maximum and minimum dimensionless stress intensity factor SIF along the crack front are 
smaller under bending than under tension, while the convergence of such a SIF is better under 
bending than under tension. Maximum dimensionless SIF presents lower dispersion than the 
minimum for the different initial cracks. Therefore, fracture risk due to a local fracture criterion 
(when the SIF value reaches fracture toughness) is higher under tension than under bending.  

The greater the m coefficient of the Paris law, the greater the convergence of the 
different initial crack conditions in almost all the results: geometry of the crack front (a/b) 
and dimensionless SIF (Ymax, Ymin). The difference between the results for the different 
values of m is always bigger between m=2 and m=3 than between m=3 and m=4, which 
implies that, as this parameter increases, there is less dependence of results on it. 
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