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ABSTRACT. Our formalisation of the Maximum Variance Method (τ-MVM) postulates 
that, in ductile materials subjected to fatigue loading, the plane where the crack 
initiation phenomenon takes place, i.e. the so-called Stage I plane, is the one containing 
the direction along which the variance of the resolved shear stress reaches its maximum 
value. From an engineering point of view, the most interesting implication of the above 
assumption is that the τ-MVM can successfully be used to address problems involving 
not only constant but also variable amplitude uniaxial/multiaxial fatigue loading. 
Further, thanks to its particular features, from a computational point of view, after 
calculating the variance and covariance terms associated with the considered load 
history, the effective time needed to locate the critical plane does not depend on the 
length of the load history itself. Such a computational efficiency makes the τ-MVM an 
appealing engineering tool suitable for being used to perform the fatigue assessment of 
real components. In this scenario, the present paper aims to investigate whether, 
independently from the degree of multiaxiality and non-proportionality of the applied 
loading path, the direction experiencing the maximum variance of the resolved shear 
stress is capable of correctly predicting the orientation of Stage I crack paths. 
 
 
INTRODUCTION 
 
Examination of the state of the art [1, 2] shows that the most successful criteria suitable 
for estimating medium/high-cycle fatigue damage under multiaxial time-variable 
loading are those based on the use of the so-called critical plane concept. In order to 
efficiently apply the above criteria, one of the trickiest aspects is correctly defining the 
orientation of the critical plane, where such a problem must be optimised not only in 
terms of modelling the physical processes taking place within the process zone [3], but 
also in terms of computational time required to determine the orientation of that 
material plane on which fatigue damage reaches its maximum value [4]. 

In this complex scenario, we have recently proposed a novel approach taking as a 
starting point the assumption that the critical plane can be determined through that 
direction experiencing the maximum variance of the resolved shear stress - the so-called 
Shear Stress-Maximum Variance Method (τ-MVM) [5]. In more detail, such an 
approach locates the critical plane by addressing the problem in terms of variance and 
co-variance of the stress components damaging the assumed critical location. From a 
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fatigue design point of view, the most interesting peculiarity of the τ-MVM is that it is 
very efficient, the computational time required to reach convergence being independent 
from the length of the post-process load history [6]. Having said that, a very cruel 
question arises: Is the direction experiencing the maximum variance of the resolved 
shear stress capable of correctly predicting also the orientation of Stage I crack paths 
independently from the degree of multiaxiality and non-proportionality of the applied 
loading path? This paper then attempts to quantitatively answer the above question. 
 
 
STAGE I AND STAGE II CRACKS UNDER FATIGUE LOADING 
 
Back in the 60s, by performing an accurate experimental investigation, Forsyth has 
suggested that the process resulting in the initiation and subsequent initial propagation 
of micro/meso cracks can be subdivided into two different stages [7]: Stage I cracks 
grow along those crystallographic planes experiencing the maximum shear, their 
propagation being mainly Mode II dominated; Stage II cracks instead take over from 
Stage I propagation and their growth is Mode I governed. In other words, the formation 
of Stage I cracks is controlled by the microscopic shear stress/strain relative to those 
easy glide planes subjected to the maximum shear. The Stage I crack length is seen to 
vary as both the material morphology and the amplitude of the applied stress vary, the 
maximum length of Stage I cracks being of the order of a few grains [8]. 

By carefully investigating the cracking behaviour of uniaxially fatigued ductile 
materials, Tomkins came then to the following ground-breaking conclusion: “Stage II 
propagation occurs due to plastic de-cohesion on the planes of maximum shear strain 
gradient at the crack tip… the same mechanism is operative also in Stage I growth, but 
de-cohesion occurs on only one of the available shear planes” [7]. 

The initiation and initial propagation of micro/meso crack is governed by the same 
mechanisms also when ductile engineering materials are subjected to multiaxial fatigue 
loading. As to the observed cracking behaviour under complex loading paths, initially it 
is worth remembering here that micro/meso-cracks can propagate either on the 
component surface (Case A) or inwards (Case B), where Case B is seen to be much 
more damaging than Case A [9]. If attention is focussed solely on Case A, it is common 
opinion that, under multiaxial fatigue loading at room temperature, fatigue cracks 
always initiate on Stage I planes and it holds true independently from the degree of 
multiaxiality of the stress/strain field acting on the fatigue process zone (see Ref. [2] 
and the references reported therein). In particular, in some materials the crack initiation 
phenomenon is characterised by the formation of Stage I cracks whose length cover 
several grains [10]. On the contrary, in some other cases, Stage I cracks are so small that 
the overall cracking behaviour at a mesoscopic level is mainly Mode I governed [11]. 

It is possible to conclude by observing that, according to the considerations briefly 
summarised above, the maximum shear stress is then an engineering quantity which is 
closely related to the initiation and initial propagation of fatigue cracks [2]. This implies 
that such a stress component can successfully be used to estimate fatigue damage, 
provided that, the critical planes used to perform the fatigue assessment are capable of 
correctly modelling the formation of Stage I cracks. 
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Figure 1. Critical plane and direction, MV, experiencing the maximum variance of the 
resolve shear stress. 

 
 
FUNDAMENTALS OF THE MAXIMUM VARIANCE METHOD 
 
Since the most important features of the τ-MVM have already been discussed in Refs 
[5, 12] in great detail, considering also the numerical aspects involved in the solution of 
the problem [6], only the fundamental idea on which such a method is based will be 
considered below. 

The τ-MVM takes full advantage of the fact that, in a time-variable load history, the 
variance of the stress process damaging the component being assessed is proportional to 
the amplitude of the signal and not to its mean value [13]. In particular, the variance of a 
time-variable signal is the expected value of the square of the deviation of that signal 
from its mean value, so that it quantifies the amount of variation of the signal itself 
within the two extremes defining the maximum range. 
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Figure 2. Investigated constant and variable amplitude loading paths. 
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From a structural integrity point of view, the above definition results in the fact that 
the variance of a stress signal can be assumed to somehow be related to the associated 
fatigue damage extent [5, 13]. 

The above preliminary considerations should make it evident that, by correctly post-
processing the time-variable stress state at the assumed critical point, it is possible [2, 5, 
12] to determine the orientation of the critical plane by locating the material plane 
containing that direction, MV, which experiences the maximum variance of the resolved 
shear stress, τMV(t) – see Figure 1. In terms of microscopic processes taking place 
within the process zone and resulting in the formation of Stage I cracks, the 
macroscopic direction experiencing the maximum variance of the resolved shear stress 
can be assumed to be coincident with that microscopic easy glide direction along which 
the dislocation motion is maximised [14], the resolved shear stress being the driving 
force of such a process [15]. 

To conclude, it can be said that the use of the τ-MVM results in a great simplification 
of the multiaxial fatigue assessment issue, because, according to the above assumptions, 
the resolved shear stress, τMV(t), is a monodimensional time-variable stress quantity 
that, over time, varies its magnitude, but not its direction (Fig. 1). 
 

Table 1. Mechanical static properties of the investigated materials. 
 

σy σUTS Material Ref. 
[MPa] [MPa] 

Mild Steel [16] 221.7 373.8 
Hard Steel [16] 392.4 680.8 
Grey Cast Iron [16] - 171.7 
GGG40 [17] 334 447 
GTS45 [17] 305 449 
18G2A [18] - 535 
1%Cr-Mo-V [19] 725 828 
42CrMo4 [20] 980 1100 
AISI 303 [20] 330 625 
CK45 [21] 410 660 
30NCD16 [22] 930 1070 

 
 
 

MAXIMUM VARIACE METHOD AND STAGE I CRACK PATHS 
 
In a ground-braking paper dated back 1977, Kanazawa, Miller and Brown affirm [14]: 
“Stage I cracks form on crystallographic planes, being slip planes within individual 
grains of metal. These are not necessarily the planes of maximum shear in the 
macroscopic sense, but rather the slip system most closely aligned to these planes. 
Clearly, the slip systems which experience the greatest amount of deformation are those 
which align precisely with the maximum shear direction, and therefore most fatigue 
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cracks initiate in these grains. But slip systems with lesser degrees of shear also initiate 
cracks at a slower rate”. 
 

 
Figure 3. Assumption made to estimate the orientation of Stage I planes from the 

measured Stage II crack paths. 
 
 

As briefly mentioned in the previous Section, the τ-MVM estimates the orientation 
of the critical plane through the direction experiencing the maximum variance of the 
resolved shear stress, such a direction being considered as coincident with that 
microscopic easy glide direction along which the dislocation motion is maximised. In 
the present section, it is investigated then whether the τ-MVM is capable of modelling 
the experimental reality as described by Kanazawa, Miller and Brown [14]. 

In order to check the accuracy of the τ-MVM in estimating the orientation of Stage I 
crack paths under complex fatigue loading, a systematic bibliographical investigation 
was carried out to select a number of appropriate experimental results, the static 
properties of the considered materials being summarised in Table 1. In the investigated 
materials fatigue cracks were generated by testing cylindrical samples under the loading 
paths sketched in Figure 2. By carefully observing the way the cracking behaviour of 
the materials listed in Table 1 was investigated, it is easy to come to the conclusion that 
the measured crack path orientations reported in the original sources were determined 
by directly measuring the orientation of the macroscopic Stage II planes [16, 20, 21]. 
Therefore, Stage I crack path directions were derived, as suggested indirectly by Miller 
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[23] and explicitely by Carpinteri and co-workers [24, 25], according to the simplified 
rule summarised in Figure 3. 

The overall accuracy of the τ-MVM in modelling the Stage I cracking behaviour is 
summarised by the experimental, λI, vs. estimated, λI,e, Stage I crack path angle diagram 
reported in Figure 4 (see Figure 3 for the definition of angle λI). 
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Figure 4. Accuracy of the τ-MVM in estimating the orientation of Stage I crack paths. 
 
 

The above chart makes it evident that the τ-MVM is highly accurate in estimating the 
orientation of Stage I crack paths under proportional fatigue loading, this holding true 
also when variable amplitude load histories are involved. On the contrary, as far as non-
proportional situations are concerned, the use of the τ-MVM results in a higher level of 
scattering. This can be ascribed to the fact that under non-proportional loading (i.e., 
when the principal directions rotate during the loading cycle) several slip systems are 
activated simultaneously so that microscopic Stage I cracks tend to propagate in several 
directions, resulting in a larger deviation of the Stage I directions [14]. On the contrary, 
under proportional loading, micro-cracks are seen to grow mainly along a preferential 
plane, resulting in smaller deviations of the propagation directions with respect to the 
one of maximum shear [14]. 
 
 
CONCLUSIONS 
 

According to its modus operandi, the τ-MVM estimates the orientation of the critical 
plane through that direction experiencing the maximum variance of the resolved shear 
stress, such a plane being treated as that material plane where the initiation and initial 
propagation of Stage I cracks take place. This direction is calculated by assuming that 
metallic materials are homogenous and isotropic, that is, by disregarding the real 
material morphology. In spite of the above simplifying hypotheses, the sound agreement 
between estimated and experimental orientation of the Stage I crack paths we have 
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obtained suggests that the τ-MVM is a design tool capable of capturing the engineering 
essence of the investigated phenomenon. Accordingly, the τ-MVM can safely be used, 
together with the appropriate multiaxial fatigue criterion [2, 5, 12], to perform the 
fatigue assessment in situations of practical interest. 
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