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ABSTRACT. It is well-known that shear and anti-plane loadings of a through-the-
thickness crack in a plate generate coupled three-dimensional fracture modes. These
singular modes are currently largely ignored in theoretical and experimental
investigations as well as in standards and failure assessment codes of structural
components, where it is assumed implicitly that the intensities of these modes as well as
other three-dimensional effects are negligible. In this paper we provide an overview of
recent studies carried out by the authors, which demonstrate that the account for these
coupled modes can totally change the classical (two-dimensional) view on many
fracture phenomena. In particular, this relates to a generation of the coupled modes by
non-singular shear and anti-plane stress fields and a strong effect of the plate thickness
on the intensity of the coupled modes, which can influence fracture conditions.

INTRODUCTION

Plane analytical solutions, some of which are ntbam a hundred years old, still serve
as the foundation for many engineering disciplingsplications, design procedures,
standards and failure assessment codes. In additi@-dimensional computational
solutions are currently dominating the numericalgsis of plate components because
such models are normally far more computationafficient, much easier to develop,
mesh, implement and verify in comparison with tleeresponding three-dimensional
counterparts. Because of this dominance the fagirityaof experimental studies in the
past have also utilised the theoretical two-dimemel framework [1].

However, in problems with cracks (or other strongnaentrators) the two-
dimensional theories can often lead to peculianlteslue, in part, to the fact that these
are approximate theories even when the governingtems of these theories are solved
exactly [2]. This is particularly pronounced whelme ttwo-dimensional (or plane)
solutions are utilized to analyze very small orwkarge structural components. This
important actuality will be illustrated and disceddater in this paper. We will start this
paper with a brief introduction to the coupled frae modes, which essentially
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represent a three-dimensional effect, which can b®otrecovered from the classical
plane solutions of the theory of elasticity.

Consider a through-the-thickness crack loaded @assbr anti-plane loading. These
loadings generate additional local fracture modas  Poisson’s ratio effect and the
redistribution of stresses on the free surfaceusdrated: in Fig. 1a — mode Il loading
and Fig.1b — mode Il loading.
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Figurel. lllustration of coupled fracture modes tlu@oisson’s effect and the
redistribution of stresses close to the free seddor a crack subjected to shear (a) and
anti-plane loading (b)

The coupled modes are characterized by singulasstates, which rapidly decay
with the radial distance from the crack tip. Thatensities vary significantly across the
plate thickness apart from the stress intensitfeth® primary modes (mode I, 1l and
[l), which vary in relatively narrow range. The riamum values of the intensities of
the coupled modes are in the vicinity of the fradfaces. However, at a point when a
corner front (crack front) intersects the free aoef the singular stress states associated
with the primary and coupled modes disappear. &t ploint a new three-dimensional
corner singularity develops instead. Thus, thesststate at corner points or in the close
vicinity of the free plate surfaces is very comatid.

A typical crack front of a fatigue crack is usuatlyrved in the vicinity of a corner
point. It tends to intersect a free surface at samgle. This angle is often linked to a
critical angle, at which the corner singularity iae same strength (power) as the rest
of the crack front i.e. square root singularityisTbritical angle is a function of type of
loading and Poisson’s ratio, but this tendency aodelation are still not sharply
defined. In the following we will consider only thease when the crack-front is
perpendicular to the free surface or critical anijleve rely on this concept, is 40The
latter corresponds to the theoretical values of dhiical angle at small values of
Poisson’s ratio in the cases of shear and antiegi@adings. Analysis of other cases will
require a more substantial computational effort buis believed that all major
tendencies and effect to be presented will takeepiia this more general case as well.

It is obvious that within the classical plane sires plane strain theories of elasticity
these effects can not be recovered and investigaiberefore, the systematic
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investigations of coupled modes accompanying tlmagry modes Il and Il become
possible only with a step advance in computatiapgiroaches and computing power in
the 1990’s; primarily due to the requirement ofesyfine and accurate meshing as the
coupled modes are local and concentrated in theityicof the tip. In many research
papers these coupling modes were named as a rdasomarious phenomena
accompanying fracture and fatigue crack growth (se®ng others Nakamura and
Parks [3]; Les Pook [4, 5]).

The coupled mode in shear loading, so callggmode was also investigated
analytically utilising Kane and Mindlin high ordgslate theory [6]. Recently, the
coupled modes were studied for sharp and roundhastof arbitrary notch opening
angle by the present authors. It was demonstrat#dtiiese coupled modes have many
interesting and previously unknown features, whatle capable of advancing our
understanding of size effects, mixed-mode fractarack initiation and fatigue growth
phenomena [7 -13]. Among these features a genarafithe coupled modes by non-
singular shear or anti-plane loading (wikh; = 0 or/and K;;; = 0) [10]. From the
classical point of view, the quasi-brittle craclopagation is impossible in these cases
as the energy release rate is zero. However, tinesimgular loading still generates
singular coupled fracture modes, which are cap@bieaitiate fracture. In this situation a
strong plate thickness effect was found, which tedan increase of the intensity of
the coupled mode generated by mode Il loading aiithincrease of the plate thickness.
A similar situation takes place for mode Il loagimrAn extrapolation of these results
leads to a very interesting conclusion that veigkttplate components with through-
the-thickness cracks have no strength if loadeshegar and anti-plane loading [2, 13].
The coupled mode generated by shear loading isgiraffected by Poisson’s ratio
and, in contrast the intensity of the anti-planaped modes does not vary much with
the change of Poisson’s ratio. In the next Sectioves will provide some numerical
examples of the generation of the coupled modes ardktail description of the
aforementioned effects.

MODELLING APPROACH

In the beginning we briefly describe the modellingethodology adapted in our
numerical studies [6 — 13].

Geometry

Because the coupled singular modes are local maddsspread to the distance of
approximately half of the plate thickness, the peobgeometry is normally truncated to
a disk with in-plane dimensions sufficient to avthe effect of the finite boundaries on
the stress state of the coupled and primary modibs. antisymmetric boundary

conditions are utilised to further simplify the geetry. The final geometry is shown in
Fig. 2 and appropriate displacement boundary cmmditcorresponding to anti-plane or
shear loadings are applied on the cylindrical si&fas illustrated in this figure. The
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origin of the Cartesian coordinate systémy, z) is located at the crack tip, at the mid-
surface where-direction was chosen to be the direction of trezkbisector.

In the finite element models, a denser nodal aearemnt is created in the proximity
of the crack tip where the mesh has to be very farethe analysis of the coupled
modes. All calculations are carried out using tHe¢SX'S 11 code. The mesh package,
utilising a mesh consisting of an initial arrangemef 15-node trapezoidal elements at
the notch tip, surrounded by a radial array of 2@en brick elements, where each
element spans an angular sweep of 1’1.25

- -~

Mid-plane

Displacment boundat
x conditions

Crack front

Free surfaces

Figure 2. Finite element model geometry and boundanditions

Boundary Conditions

The displacement plane stress boundary conditiomsjaplied beyond the area of 3D
effects (this area is confined within a cylindetiwthe axis of symmetry along the crack
front and radius equal to half of the plate thids)e In shear loading the displacement
field far from the crack tip can be represented Beries as [14]

o n/2

o b, [(k+——( 1)”)sm ¢——51n(5—2)¢] (1a)
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[oe)

- — n — — - —
k +( 1) )cos ¢+ cos(2 Z)gb] (1b)
n=0
wherey is the transverse elastic modulus &nthe Kolosov’s constant for plane stress
conditions, which prevail far from the crack tip:
3—v
k =

1+v

v being Poisson’s ratio.
In the case of anti-plane loading the out-of-pldisplacementy, beyond the area of
3D effects can be expressed as [15]'

sin (— — n) [0) (2)

Coefficientb; andc, in (1) and (2) are tied to the applied mode Il amode Ill stress
intensity factors, respectively, by the followirglationships [14, 15]

b = Ki
1 m (3a)

2

The displacement filed correspondingHg is related to rigid body translation at the
crack tip and do not contribute into the stressas$ strains; similar, the term in the
asymptotic expansion (1) withy, represents a rigid rotation of the body aboutdfaek
tip also producing no stress field. Therefore, ¢hesms are omitted in the numerical
studies.

To systematically investigate the generation ofpted modes we will apply far from
crack tip the displacement field, which correspotas single term in the asymptotic
expansions. In the case of complex loading wittessvterms, the solution can always
be found by simple superposition of the solutioos@&sponding to the each asymptotic
term.

and

SHEAR AND ANTI-PLANE LOADING BY LEADING TERMS OF FAR FILD
EXPANSION

In the beginning we will provide a formal definiticof the stress intensities for the

coupled modes. The stress intensity factor of thi#-ane coupled mode can be
defined similar to mode II, or as
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K5(z) =V2m lim 7, (x, 0, 2) Vx (4a)
X—

and the definition of the stress intensity of the shear coupled mode is similar to
mode III, or

Kf(2) =V2m lim 7y, (x,0, 2Vx (4b)

where x is the distance from the crack tip along the bi-sector direction.

To determine the stress intensities, the corresponding stress components are
first calculated and extracted from FE analysis and then substituted into the above
equations to identify the value of the stress intensity for the coupled modes at
certain z - coordinate along the crack front. Some conditions have to be met in
order to get correct values of the stress intensities, which are exhaustively
described in the literature.

First, we consider the case when a through-thddtleiss crack is loaded by shear or
anti-plane loading when only the first (singulagym in the asymptotic expansion is
non-zero b; # 0 andc, # 0) and all other terms are zero ibg. = c, = 0 for all other

n. Figures 3a and 3b show the results of carefuFBDstudies for shear and anti-plane
loading of a through-the-thickness crack, respebiv

K
Kir
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v- increasing
0.5 § v=0.;0.1;0.3and 0.5
g ° Kfi(2)
o § 3
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Fig.3a The dependence of the intensity of the pyr{mode I1)K;;(z) and the coupled
modeK, (z) = Kf;,(z) across the plate thickness in the area near #uk ¢ip. The
influence of Poisson’s ratio on the intensity of firimary mode is very weak and

results are not shown for the sake of the clafitthe figure.
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Fig.3b The dependence of the intensity of the pnntaode 11)K;;,;(z) and the coupled
modeK S (z) across the plate thickness in the area near #uk ¢ip. The influence of
Poisson’s ratio on the intensity of the coupled msdvery weak and results are not
shown for the sake of the clarity of the figure.

From these figures it is clear seen that the intiessof the coupled modes are
comparable with the intensities of the primary neodeor example, in the case of shear
loading (Fig. 3b) the intensity of the coupled masleven higher than the intensity of
the applied mode. The maximum values of the intessiof the coupled modes are
located in the vicinity of the plate free surfac€his feature of the coupled modes can
explain as to why for shear and anti-plane loadexjserimental observations indicate
that fatigue crack growth tends to take place is tégion [4].

The intensities in the case of shear loading agaifstantly affected by Poisson’s
ratio, and the intensity of the coupled mode vasssivhenv = 0, see Fig. 3a. This is
because the Poisson’s effect is the main mechamsitme generation of this coupled
mode. In contrast, the intensities of the primarg aoupled modes in the case of anti-
plane loading (mode Ill loading) are not signifidgraffected by Poisson’s ratio as this
coupled mode is generated by a mechanism assotmtada redistribution of the
transverse shear stresses close to free platecesyfaee Fig. 3b. These transverse
stresses have to be negated due to the stresbdrewlary conditions on the plate
surfaces.
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SHEAR OR ANTI-PLANE LOADING WITH K |; =0OAND K ;=0

In the following examples of FE simulations we destoate that the terms in the
asymptotic expansions (1) and (2), which correspdndnon-singular stress fields can
also generate singular coupled modes. Figure 4daglishe dependence of the intensity
of the coupled modes across the plate thicknessrgtd by single terrh;, when the
corresponding displacement field is applied toFBemodel as the boundary condition
far from the area of 3D effects. In this case titensity of the primary mode across the
plate thickness is zero df;(z) = 0. It is seen from Fig. 4a that the intensity of the
coupled mode generated by non-singular loadinggsifcantly affected by Poisson’s
ratio [10].
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Fig.4a The dependence of the singular coupled nit¢e across the plate thickness for
h = 10 mm and;= 1 MPa mrif-®

Similar computational results for the anti-planadmg are shown in Figure 4b. As
in the case of singular loading described in thevipus Section, the intensity of the
anti-plane coupled mode is not significantly aféetby Poisson’s ratio.

These figures, demonstrate that the coupled maale$e generated by non-singular
shear and anti-plane loadings, i.e. when the ap@i§ = K;;; = (K;°) = 0. These
features of the coupled modes have a direct imphicao failure assessment of plate
components. Shear and anti-plane loadings are Epahnitiate brittle fracture by
crack propagation due to the generation of the leaumodes, even when the intensities
of the primary modes are negligible. Thus, in thsecof sufficiently brittle material, the
coupled modes can totally dominate the stress statlke crack tip, contribute to the
energy release rate and, therefore, initiate eritlicture. The same comment relates to
the case of the fatigue crack growth.
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Fig.4b The dependence of the singular coupled miSgeacross the plate thickness for
h = 10 mm anda:;= 1 MPa mnf*®

SCALE EFFECTSASSOCIATED WITH INCREASE OF PLATE THICKNESS

As mentioned above the coupled modes are local snadd propagate in the plane
direction to approximately a half of the plate #mess. It means if the stress fields
corresponding to the coupled modes are encapsutstede area, where the primary
load is dominating then the intensity of the applrrode must be a linear function of
the intensity of the primary loading, df5 andKS,; have to be proportional to, and

b,, respectively. Further, from dimensionless consitiens, and taking into account
that the plate thickness is the only other dimemaigparameter of the problem with a
length dimension, we arrive to the following intetiag theoretical dependences [2, 13]:

KE,(2/h) = fum(z/h V)byh 2 (5a)

and

Kfi(z/h) = fin(z/h,v)c, " (5b)

where f;;, and f;;;, are dimensionless functions of the position altmg crack front
and Poisson’s ratio, such as those shown in Faysd34.

These dependences (5) mean that the intensitiee afoupled modes increase with
an increase of the plate thickness except for ithgutar loading or loading by the first
singular term. For higher order terms an incredsbeplate thickness (or overall sizes
of plate structure) will lead to much stronger effand even a small variation of
thickness can cause large variation in the intgradithe coupled mode. This thickness
effect is also has been confirm by direct numerssadulations. Typical results for the
anti-plane loading for two different plate thickses are shown in Fig.5.
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Fig.5. Intensities of the coupled modes for twdetént plate thicknesséss= 10 and 20
mm (c;= 1 MPa mrif-9)

In the case of general loading when few asymptotcles are applied the effect of
the plate thickness can be obtained by simple pogéion due to the linearity of the
elastic problem as

KEG/W) = Y fum(e/h by T (62)
and
KE@/1) = ) fum(z/h, v)cah” (6b)
n=0

The dependence of the intensity of the coupled mddem the plate thickness, see
equations (6), becomes quite complicated.

Currently, industrial and international standardsfr@cture toughness testing ignore
the coupled modes and other 3D phenomena and edhittkness requirements for
valid fracture testing based on the smallness @fplhstic zone in comparison the plate
thickness. In this paper we tried to demonstratd the 3D effects could lead to a
significant rise of the singular stress statesesponding to coupled modes, which in
turn, are significantly affected by the plate thieks. This is specifically important for
testing fracture toughness in mode Il and Il ox&d mode of loadings. The literature
results indicate a large scattering in such tests large variation of experimentally
obtained values with the specimen size. The rehsbind these inconsistencies can be
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the influence of the three-dimensional singulaesdrstates on the failure initiation
conditions. Therefore, the future work can looloittiese issues, specifically for typical
sample geometries. The same comment relates tiaithee assessment codes, which
largely ignore the three-dimensional effects.

CONCLUSION

In the conclusion we will provide a summary tabidich describe the most important
features of the coupled modes.

Table 1: Classical versus three-dimensional theorie

Classical (2D) theories Three-Dimensional theory

Fracture Modes

3 primary fracture modes
modes |, Il and Il

5,5 modes (3 primary and 2 coupled
local modes)

Extension of singula
stress states

r Extension of primary modes
not affected by plate thickneg

sExtension of coupled modes is
sstrongly affected by plate thickness

Plate thickness effect

It is negligible for quasi-brittle
fracture and fatigue

» Marginal effect on primary and
strong influence on coupled modes

Loading by non-singular No energy release rate —

shear and antiplan
loading (K, w = 0)

efracture by crack propagation

ndlon-zero coupled modes can
initiate brittle fracture even when
Ki,m =0

Effect of Poisson’s ratio

No effect in problems with
stress type boundary conditiq

1 Marginal effect on primary and a
rstrong influence omoupled modes

Scale effect

Stochastic, fractal, etc nature

Also predicts a strong scale effect
of deterministic nature

"Meaning the fracture modes which contribute to ¢énergy release rate apart from the 3D
corner singularities [16], which are concentrated ivery small area (point).

As it can be seen from Table 1, the theoreticabagsh recently conducted by the
authors has identified significant and fundameditierences between the actual three-
dimensional world and the simplified classical (tdimensional) theories of quasi-
brittle fracture leading to essentially differeentiencies and predictions; specifically
for very thick and very thin plate or shell-likewttures, as the intensity of the coupled
modes grow or decay as a power function of theeflatkness in the simplest case, see
Eq. (5) [17]. Itis recognised that the future Wwbias to be directed to the experimental
confirmation of the above described theoreticatléarties and effects.
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