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ABSTRACT. Fretting fatigue is a combination of two complex and serious mechanical 

phenomena, namely fretting and fatigue. The combination of these two phenomena can 

cause sudden fracture of components that are subjected to the oscillatory motions 

(fatigue) and at the same time are in contact with each other (fretting). Fretting fatigue 

lifetime can be divided to two different parts, namely crack initiation and crack 

propagation. In order to model fretting fatigue crack propagation, one of the 

simplifications that is widely used by researchers relies on the assumption of straight 

crack, normal to the contact surface.  

In this study a modified fretting fatigue contact model in conjunction with eXtended 

Finite Element Method (XFEM) is used to monitor the effect of mode-mixity on fretting 

fatigue crack propagation. For this purpose, Python programming language along with 

ABAQUS
®

 software is used to implement the application of XFEM to fretting fatigue 

crack propagation. 

 

 

INTRODUCTION 
 

Fretting occurs due to oscillatory relative displacement between two components that 

are in contact together, which results in damage at the contact interface. Once these 

components face cyclic fatigue load at the same time, fretting fatigue occurs. Fretting 

fatigue is a serious phenomenon, which leads to reduction of fatigue lifetime of 

component compared to pure fatigue case. The schematic view of experimental setup of 

fretting fatigue is illustrated in Fig. 1. In this setup two identical fretting pads are pushed 

against the fatigue specimen using constant load, which is called normal load and at the 

same time the specimen is subjected to oscillatory fatigue load. Then, at presence of 

these two non-proportional loads fretting fatigue fracture occurs.  

Fretting fatigue failure process can be divided into two main portions, namely crack 

initiation and crack propagation. It is proven that in fretting fatigue failure scenario after 

nucleating crack at contact interface, in early stage of crack propagation its behavior is 

governed by frictional shear stress at the contact interface [1]. Afterwards, far from the 

contact the crack is dominated more by the axial bulk stress[1]. In terms of crack 

propagation, there are numerous studies [2-10] that have used fracture mechanics 
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approach to calculate fretting fatigue crack propagation lifetime. The fracture mechanics 

approach is based on calculating Stress Intensity Factors (SIFs) at the crack tip either in 

pre-cracked or un-cracked fatigue specimen. Rooke and Jones [2] used Green’s 

function, which is purely analytical formula for calculating SIFs at the crack tip. Some 

authors used combination of Finite Element Analysis (FEA) methods and analytical 

formula such as Weight functions [4, 5, 8] to calculate SIFs for cracks normal to the 

contact line or having an arbitrary path inside the un-cracked fatigue specimen. Also, 

FEA method has been used widely to calculate SIFs at the crack tip in cracked 

specimen, more information can be found in references [3, 6, 7, 9, 11]. All of these 

studies have used the calculated SIFs at the crack tip using the assumption of Linear 

Elastic Fracture Mechanics (LEFM) to calculate the number of cycles of crack 

propagation from a certain crack length up to final failure. One of the major 

simplifications, which have been extensively used in FEA crack propagation models 

was based on using normal crack instead of mixed mode crack propagation. The reason 

that this assumption took into account was experimental observations that were reported 

in the literature, e.g. [12-14]. Furthermore, the hypothesis of normal crack can reduce 

the cost of numerical computation. 

In this investigation the fretting fatigue crack propagation is modeled for both normal 

and mixed mode crack propagation in order to verify the validity of this assumption, 

especially at early stage of crack propagation. For this purpose, a modified fretting 

fatigue contact model in conjunction with eXtended Finite Element Method (XFEM) is 

introduced to study the behavior of fretting fatigue crack propagation. Python 

programming language along with ABAQUS
®
 software was used to implement the 

application of XFEM. Finally, the fretting fatigue crack propagation of mixed mode 

crack is compared with the normal crack growth. 

 

 FRETTING FATIGUE MODIFIED CONTACT MODEL 
 

To solve the fretting fatigue contact model shown in Fig. 1, only half the specimen 

needs to be modeled using FEA because the experimental setup is ideally symmetric 

about the axial centerline of the specimen. As depicted in Fig. 2, the specimen was 

restricted from vertical movement along its bottom surface and free to roll in the x-

direction along its bottom edge. The length of the specimen, width of the specimen and 

radius of pad were selected as L=20 mm, b=10 mm and R= 101.6 mm, respectively. 

Both the fretting pad and the fatigue specimen had a unit depth. Both sides of 

cylindrical pad were restricted just to move in vertical direction. The Multi-Point 

Constraint (MPC) was also applied at the top of pad in order to avoid rotation due to the 

application of loads. 

A two-dimensional, 4-node (bilinear), plane strain quadrilateral, reduced integration 

element (CPE4R) was used. The mesh size of 5 µm × 5 µm was considered at contact 

interface and decreased gradually far from the contact region for all models. This mesh 

size was gained by mesh convergence study which was achieved by previous study 

[15]. The contact between the fretting pad and the fatigue specimen was defined using 

the master-slave algorithm in ABAQUS
®
 for contact between two surfaces. The circular 

352

Carpinteri
Rettangolo



3 

 

surface of the pad was defined as a slave surface and top surface of the specimen was 

defined as a master surface. Al 7075-T6 was selected for both the pad and the specimen 

with Modulus of Elasticity of 71 GPa and a Poisson's of 0.33.  A Coefficient of Friction 

(COF) of 0.75 was used in this study. In all cases, the normal load and maximum axial 

stress were considered as F= 60 N,         80 MPa, respectively. Also, in order to 

study the effect of tangential load on crack propagation different ratios of Q/(µF) = 

0.45, 0.67 and 0.9 were used. 

One of the challenging tasks in fretting fatigue is modeling the tangential load Q at 

contact interface. As shown in Fig. 1, the pads are restrained by springs so that a 

tangential fretting load Q is applied to the contact surface in phase with the axial bulk 

stress. In the modified model in this study, loads were applied in two steps. Normal 

contact load F was applied in the first step to establish contact between the fretting pad 

and the fatigue specimen. For applying tangential load Q, the experimental data was 

used. In experimental tests, the tangential force is defined by subtraction of the axial 

bulk load and the reaction load that can be measured by an attached load cell to the 

fixed side of specimen. Then, by dividing it by two, the tangential load at each side of 

specimen, which is in contact with fretting pad, is obtained as    
           

 
  where 

Faxial is the axial bulk load and Fr is the axial reaction load. In order to model the effect 

of attached spring to the fretting pad for generating the tangential load, the reaction 

stress (  ) can be calculated based on               , where As is cross section 

area of specimen as shown in Fig. 2: Therefore, in the modified model, in the second 

step, the maximum axial stress         and the reaction stress    were applied at the 

same time at right and left sides of specimen, respectively, to match the experimental 

maximum cyclic loading condition. The accuracy of proposed model has been 

compared with the most of fretting fatigue FEA models that are available in literature by 

authors in [15]. 

 

 

 
Figure 1. Schematic view of fretting 

fatigue experimental setup 

 
Figure 2. Modified FE model of fretting 

fatigue 

 

 

 

353

Carpinteri
Rettangolo



4 

 

EXTENDED FINITE ELEMENT METHOD (XFEM) 

 

Modeling stationary cracks using conventional finite element method needs the 

geometry of cracked body to be matched with the mesh. Then, in order to capture 

singularity at the crack tip, the mesh around the crack tip is needed to be considerably 

refined. Moreover, molding crack propagation using mesh refinement techniques are 

really cumbersome, especially in 3-D and complex models. Recently, XFEM decreases 

inadequacy associated with re-meshing of the crack tip [16, 17]. The XFEM is the 

extended version of conventional FE method, which is based on concept of partition of 

unity method by Melenk and Babuska [18]. It allows local enrichment functions to be 

easily incorporated into a finite element approximation. For the purpose of fracture 

mechanics analysis, the enrichment functions typically consist of the near-tip 

asymptotic functions that capture the singularity around the crack tip and a 

discontinuous function that represents the jump in displacement across the crack line (in 

case of 2-D). The approximation for a displacement vector function       with the 

partition of unity enrichment is  

 

                              
                

 
          ,       (1) 

 

Where,       are the usual nodal shape functions for conventional finite element 

formulation. The first term on the right-hand side of Eq. 3,   , is the usual nodal 

displacement vector associated with the continuous part of the finite element solution. 

The second term is the product of the nodal enriched degree of freedom vector,   
 , and 

the associated discontinuous jump function      across the crack line. The third term is 

the product of the nodal enriched degree of freedom vector,   
 
, and the related elastic 

asymptotic crack-tip functions,      .  

The usual nodal displacement vector,   , is implemented to all the nodes in the FEA 

model. The second term, i.e.            
 , is valid for nodes whose shape function 

support is cut by the crack. The third term,             
 
, is used only for nodes whose 

shape function support is cut by the crack tip. 

Fig. 3 shows the discontinuous jump function across the crack line,     , which is 

defined by:  

 

       
                                 

                                                          
                            (2) 

 

Where   is a sample integration (Gauss) point,   is the point on the crack closest to 

 , and   is the unit outward normal to the crack at   . Fig. 3 also depicts the asymptotic 

crack tip functions in an isotropic elastic material,        , which are given by 

 

             
          

 

 
        

 

 
        

 

 
        

 

 
        ,         (3) 
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Where      , is a polar coordinate system with its origin at the crack tip and      

is tangent to the crack faces near the crack tip. These functions span the asymptotic 

crack-tip function of elasto-statics. 

 

 
 

Figure 3. Normal and tangential coordinates for a smooth crack 

 

There are a lot of studies which are aimed to impalement XFEM feature in 

conjunction with conventional FEA software. For instance, Giner et al. [7] have carried 

out a two-dimensional implementation of XFEM within the FE software ABAQUS by 

means of user subroutines. Since after ABAQUS 6.9
®
, the XFEM feature is added with 

some limitations by developers, in this study this capability was used to model the 2-D 

fretting fatigue crack propagation. One of the limitations that should be solved is 

extracting the SIFs at the crack tip for a 2-D stationary crack. This will be elaborated on 

later. 

 

FRETTIING FATIGUE CRACK PROPAGATION 

 

When applying fracture mechanics to fretting fatigue, three questions will arise, where 

is the location of initial crack? How long is it? And what is its initial orientation? To 

answer the first question, the stress distribution at the contact interface was monitored 

under linear elastic material behavior and data for initial length and orientation were 

extracted from literature [13, 19]. The location of the crack as it is proven by 

experimental observation [13, 19] is at or near to the trailing edge of contact which is 

the edge at side of applied bulk stress. 

For fretting fatigue crack propagation model the crack inserted at x/a=1, where ‘x’ is 

the contact distant and ‘a’ is the semi contact width in the FE model configuration that 

is shown in Fig. 2. The crack propagation angle was chosen to be 45°, as it is 

mentioned, previous experimental studies available in literature have shown that the 

crack in fretting fatigue tests always initiated at or very near to the trailing edge with 

angle of ±45±15°. Therefore, in the first step, an initial crack of length, l0=50 µm, is 

introduced in the contact surface. Also, crack length increment of ∆l=50 µm is 

considered for crack propagation. The loading and boundary conditions are the same as 

used for contact model. In this study, at each loading condition the crack propagation is 

modeled using normal and mixed mode crack propagation approach along with zero 

stress ratio.   

x 

Nodes with Jump 

Function Enrichment (SH) 

Nodes with Crack Tip 

Enrichment (SC) 

 
Enriched Elements 

Crack tip     
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Calculating stress intensity factor  

One of the main restrictions of ABAQUS’s XFEM capability up to date (ABAQUS
®

 

6.11) is that it is not possible to extract the SIFs for a 2-D stationary crack. After 

modeling cracked fatigue specimen based on the stress and displacement fields at the 

crack tip, J integral approach was used to calculate the SIFs for LEFM assumption. The 

original form of the J-integral for a line contour surrounding the crack tip can be written 

as:  

 

        
 

 
      

   

  
   

   

  
   

 

 
,                                    (4) 

 

In which,           , is the strain energy density (    and     as stress and strain 

tensors), tx and ty are the components of the traction vector which acts on the contour, ux 

and uy are the displacement components, and ds is a length increment along the contour 

Г. Which in case of LEFM the J is equal to energy release rate G (     
  
 

  
), with 

            in plane strain problem. Finally the relation between mode I and 

mode II was calculated by using the local displacement fields un and ut respectively, 

normal and tangent to the crack tip directions (   
  

  
  

   

  
). The maximum tangential 

stress criterion was used in order to calculate the propagation angel   . Based on stress 

field near the crack tip the direction of crack propagation was obtained using fallowing 

equation:  

 

       
   

    
     

     
    

 

       
  ,                                       (5) 

 

RESULTS AND DISCUSSION  

 

In order to verify the contact model, two assumptions were taken into account. The first 

one was the elastic behavior of material, while the second was the Half Space 

assumption. Thus, the boundaries can be considered infinite if one half of the fretting 

specimen width, b, is equal to or greater than ten times the contact half width, a, or in 

other words b/a > 10. In this study, the analytical and FEA were                    

and            , respectively. Fig. 4. represents the correlation between FEA 

results and analytical solution [1] for the shear stress distribution at the contact 

interface. Furthermore, as expected the graph shows that with decreasing the tangential 

load from 40 N to 20 N, reverse slip occurs at contact edge.   

 

Fig. 5 shows the relation between the calculated SIFs at the crack tip for mixed mode 

and normal crack propagation in case of Q= 40 N. As it can be seen from the figure, 

after 200 µm crack length the assumption of normal crack works perfectly and can be 

used instead of mixed mode crack propagation. However, for small cracks for instance 
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50 µm crack length there is 62% deviation between KI for normal and mixed mode 

crack. Moreover, it can be seen that after the crack length 0.5 mm the crack is governed 

by axial bulk stress and the extracted SIFs are yielding to results, which was calculated 

analytically for Double Edge Notch Tension (DENT) specimen form [20].  

 

  
Figure 4. Validation of FEA model of 

fretting fatigue with analytical solution     

Figure 5. Distribution of normalized 

calculated SIFs VS crack length 

 

Fig. 6 illustrates the effect of different tangential load at the contact interface on the 

calculated SIFs for cracks normal to the fatigue specimen surface and mixed mode 

crack propagation. The trend can be extended to all cases. From the crack length 200 

µm, the crack will be governed by axial stress, which is relatively far from contact 

region. Moreover, this graph shows the relation between tangential stress distributions 

inside the fatigue specimen at trailing edge of contact. It is interesting to note that with 

increasing the tangential load from 20 N to 40 N, the tangential stress also increases 

near contact interface and reaches a plateau far from contact area.  

 

 
Figure 6. Comparison of SIFs and tangential stress (   ) for different tangential loads  
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CONCLUSION 

 

In this study, the effect of mode mixity crack propagation of fretting fatigue was 

investigated. The results showed clearly that at the onset of crack propagation, mixed 

mode crack propagation can have significant effect on the calculated SIFs, which are 

important parameters to calculate fretting fatigue crack propagation lifetime. 

Furthermore, it is worse to mention that after finding the transition crack length form 

mixed mode to mode I crack propagation the assumption of using normal crack is 

applicable. However, finding this certain crack length might be a challenging task.  
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