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ABSTRACT. In the present paper, both a continuum FE approach and a lattice-based 
micromechanical approach are employed to analyse fibre-reinforced brittle-matrix 
materials by adopting a cohesive-like fracture behaviour, properly modified taking into 
account the fibre bridging effect.  The basic assumptions and theoretical background of 
such two computational approaches are outlined, and some benchmark analyses related 
to random and unidirectional fibre-reinforced brittle-matrix structural components 
under monotonic tensile loading are discussed. 
 
 
INTRODUCTION 
 
As is well-known, brittle or quasi-brittle materials suffer from several drawbacks (such 
as low tensile strength, low fracture and fatigue resistance, poor wear resistance) which 
can be reduced by adding fibres to the matrix material.  Reinforcing fibres improve 
fracture toughness, ductility, durability, fatigue resistance of brittle-matrix materials.  
Nevertheless, fracture can take place even if fibres produce a shield effect in the crack 
formation and propagation, such an effect being due to the bridging stresses developed 
across the crack faces [1, 2].  The composite is macroscopically isotropic when fibres 
are randomly distributed,, while the composite behaves macroscopically as an 
anisotropic material if the arrangement of fibres in the matrix follows a preferential 
orientation (unidirectional material) [3, 4].  In the latter case, the crack propagation is 
heavily affected by such a macroscopic mechanical behaviour; further, the principal 
stresses due to the remote applied load and the bridging stresses might act along 
different skewed directions with respect to the crack orientation, and the crack grows 
under mixed mode condition. 

Since FRC materials are multiphase, they present some phenomena such as matrix 
cracking, crack bridging effects due to fibres, fibre debonding and fibre breaking which 
must be correctly modelled.  In order to examine such materials, various approaches can 
be used, such as micromechanical models [2, 5, 6] and homogenization models [7, 8]. 
Due to low fracture toughness of brittle materials, crack propagation up to failure can 
easily occur even if the fibre phase has a beneficial crack bridging effect limiting such a 
phenomenon.  Several models can be found in the literature: classical smeared crack 
approaches [9], models based on the description of the evolving crack geometry [10], 
finite element enrichment approaches [11], interface element approaches [12], meshless 
methods [13], discontinuous formulations [14], and so on.  Discrete models, such as the 
well-known lattice model [15], can also be employed.  
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In the present paper, following a recent work by the present authors [16], two 
different mechanical models are compared: (i) a continuum model based both on a 
fracture energy approach for the brittle matrix [5] and on a micromechanical approach 
to examine the macroscopic reinforcing effects due to fibres [17]; (ii) a micromechanical 
discrete lattice model [6] that can be used to simulate heterogeneous materials and 
multi-phase composites such as fibre-reinforced ones.  The basic assumptions and 
theoretical background of such approaches – especially related to the case of 
unidirectional reinforced materials – are briefly discussed.  Then, some experimental 
data related to both random and uniderectional fibre-reinforced cementitious composites 
under monotonic tensile loading are analysed. 
 
 
FRACTURE SIMULATION IN BRITTLE OR QUASI-BRITTLE MATERIALS 
 
A Continuum Approach to Fracture 
A crack process zone in a continuum material can mathematically be represented as a 
high strain localisation occurring in a very narrow region.  Assuming the existence of a 
discontinuity of the displacements in a solid, the discontinuous displacement field can 
be expressed as the sum of its continuous part and discontinuous part [14].  The 
mechanical behaviour of a cracked body can conveniently be described by a cohesive-
friction law for the cracked zone and by an elastic or an elastic-plastic law for the 
uncracked (bulk) region.  According to the cohesive crack model [1], the normal, 

)( cc uσ , and tangential stress, ),( ccc vuτ , transmitted across the crack faces, can be 
written as follows: 
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where tf  is the maximum tensile strength of the material, 0u  is the lower crack opening 
limit at which the bridging process starts, fG  is the fracture energy of the material 
(energy for unit surface crack), cr  is the mean asperity size of the crack surface 
roughnes, β  is a friction coefficient, m  is an experimentally determined parameter, cu  
and cv  are the relative crack displacements measured normally and tangentially to the 
crack surface, respectively. 

The FE formulation of the above problem can use an appropriate stress field 
correction in the cracked element, in order to get the unbalanced nodal force vector )(

,
i
uef  

at the generic iteration step i: 
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which must be iteratively driven to very small values.  In Eq. (3), )( crel wσ  is the stress 
tensor fulfilling some stress relaxation requirements according to Eq. (2), B  is the 
generic compatibily matrix of the finite element, and )(

,
i
extef  is the external nodal force 

vector at the iteration step i. 
 
A Lattice Approach to Fracture 
The domain occupied by the material is discretized by a triangular lattice (in order to 
reduce the bias of the crack trajectory, the triangular lattice can be made irregular by 
randomly perturbing the nodal coordinates), having hexagonal unit cells with truss 
elements of length l. The main advantage of the lattice models is to replace  the tensorial 
quantities (related to the continuum occupied by the material)  with vectorial quantities. 

The Young modulus of the truss elements in the lattice model determines the 
stiffness of the material. The relationship between the Young modulus of the truss ( E ) 
and that of the material (E), evaluated by equating the elastic strain energy of the 
material occupying an hexagonal unit cell with that of the lattice occupying the same 
region [15], is ( )AlEE 2)3(= ,  where A is the cross-sectional area of the truss. 
From now onwards we adopt the following notation: a bar above the symbol means that 
the quantity is related to truss elements of the lattice model, whereas the plain symbol 
means that the quantity is related to the material. 

Then, the components xyyx τσσ ,,  of a plane stress field with respect to the x-y 
coordinate system are connected to the axial stresses acting in the trusses through the 
following relationship [6]: 
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where the superscript ((1), (2) or (3)) identifies the truss orientation with respect to the 
x-y frame (the direction cosines of the truss elements are 0,1 )1()1( == yx nn ; 

23,21 )2()2( == yx nn ; 23,21 )3()3( =−= yx nn ).  
The tensile behaviour of a quasi-brittle material is described according to the 

cohesive crack approach.  Hence, the stress-strain curve is the result of the contribution 
of two constitutive laws: that of the bulk material, here assumed to be linear with Young 
modulus in tension equal to that in compression, and the crack bridging law of the 
cracked material.  The resulting stress-strain curve is characterized by a perfectly-elastic 
behaviour in compression; the tensile behaviour is elastic up to the first cracking stress, 
and then a linear postcracking curve with a softening branch follows. 

Now let us note that, having Eq. (4) in mind and examining a uniaxial stress 
condition, the first cracking stress tf  of the truss is equal to ( ) tfAl )2(3 , where tf  is 
the first cracking stress of the material. 

In line with the cohesive crack approach, the area under the stress σ  against crack 
opening w  curve (characterized by a first cracking stress tf  and an ultimate crack 
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opening uw ) is equal to the Mode I fracture energy fG  (hence, for a linear curve σ  
against w , tfu fGw 2= ).  This concept can be translated to the truss elements of the 
lattice model, if one assumes to smear the crack opening along the length of the truss.  
The ultimate cracking strain uε  turns out to be ( ) ( )tfu flG 34=ε  [6]. 
 
 
MECHANICS OF FIBRE-REINFORCED MATERIALS 
 
In this Section, the modelling of the reinforcing effects (due to fibres) within the 
framework of the two theoretical approaches being compared is described.  Unless 
otherwise specified, details of such a modelling can be found in Refs [5, 17] and Refs 
[2, 6] for the continuum model and the lattice model, respectively. 
 
Mesomechanical Model in the Continuum Approach 
The heterogeneous (composite) material is supposed to consist of a matrix phase 
(denoted by the subscript m) and a fibre phase (denoted by the subscript f) embedded in 
the matrix (Fig. 1).  The composite material (having characteristic size D ) is assumed to 
have macroscopically the same mechanical characteristics of a small Representative 
Volume Element (RVE, having characteristic size Dd << ). 

The tangent elastic tensor of the macroscopically homogeneous composite can be 
determined through an energy balance between the composite and the equivalent 
macroscopically homogeneous material: 
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where eqfm ' ,' ,' CCC  are the tangent elastic tensors (of the matrix, of the fibres and of 
the equivalent material, respectively); fE  is the Young modulus of the fibre phase; 

kkF ⊗=  is a second-order tensor, where k  is the unit vector parallel to the fibre axis, 
 =k { }θϕθϕθ cossinsincossin ⋅⋅  (Fig. 1).  In Eq.(5), m

fε  is the strain (in the matrix) 
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Figure 1. Scheme of the RVE and 
identification of the fibre orientation 
in the 3D space. 
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measured in the fibre direction, fσ  is the actual fibre stress.  Furthermore, 

VVVV ffmm /,/ == ημ  represent the matrix volume fraction and fibre volume 

fraction in the composite RVE, respectively.  Finally, )( m
fεs  is the sliding scalar 

function that quantifies the matrix-fibre strain jump, [ ][ ] ( )[ ]m
f

m
fmf s εεε −⋅=− 1 , occurring in 

the case of matrix-fibre debonding.  Preferential orientation of the fibres in one 
particular space direction can be taken into account through suitable probability 
distribution density functions )(),( θϕ θϕ pp  of the orientation angles θϕ,  : 
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with θϕα ,= . 
The above functions )(ααp  with θϕα ,= , defined in the intervals πα ≤≤0 , are 

theoretically formulated by assuming a Gaussian-like expression, which attains the 
maximum value at θϕα ,=  (mean values of the Euler angles), and the minimum value 
at 2/,2/ πθπϕα ±±= .  Further, the cumulated probability over the function domain 
is equal to one.  The parameter μ  represents the mean value of the probability 
distribution density functions (i.e. ϕμ =  or θμ = ), whereas ϕδ  and θδ  are the 
corresponding variances.  The case of randomly oriented fibres can be obtained by 
setting )sin()(  and  2/1)( θθπϕ θϕ == pp . 

In order to take into account the fibre-matrix debonding, we introduce the sliding 
function )( m

fεs  that allows us to write the fibre strain fε  as a function of the matrix 

strain m
fε , that is, ( )[ ]ε:)( kk ⊗⋅= m

ff s εε  [17].  the fibre-matrix debonding can be 
taken into account properly multiplying the integral in Eq. (5) by a function depending 
on such a relative fibre-matrix sliding. 

Note that the maximum tensile stress along a fibre is always reached at its centre 
[17].  When such a maximum stress reaches the fibre tensile strength, i.e. ftf fσ ,)0( ≥ , 
the fibre is assumed to break in two parts having the same length. 
 
Fibre Crack Bridging in the Lattice Approach 
The tensile behaviour of a fibre-reinforced composite material is described according to 
the cohesive crack approach.  Hence, the stress-strain curve for the above cracked 
matrix is combined with the crack bridging law due to fibres.  The resulting stress-strain 
curve is characterized by a perfectly-elastic behaviour in compression; the tensile 
behaviour is elastic up to the first cracking stress, and then a linear piecewise 
postcracking curve with softening branches follows. 
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Assuming a uniform distribution for the fibres, the peak stress due to the fibre crack 
bridging is [2]: 
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where  f  = snubbing coefficient (usually ranging from 0.7 to 0.9), 0τ  = frictional bond 

stress, fD  = fibre diameter, fL2  = fibre length, fη  = volume fraction of fibres. 

If unidirectional fibres are examined, 0σ  depends on the angle α̂  between the fibre 
direction and the truss direction in the lattice: 
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The peak stress due to the fibre crack bridging in the truss of the lattice normal to a 
putative Mode I crack plane is equal to ( ) 00 )2(3 σσ Al=  (e.g. see, in Eq. 4, the stress 
in the truss (1) when x is the loading axis).  

The characteristic cracking strain values of the crack bridging curve due to fibres can 
be determined by smearing the crack opening along the length of the truss, namely: 

lw00 =ε , lw fufu ,, =ε , where ( ) ( )[ ]fff DELw ρτ += 10
2

0   (with ( ) ( )[ ]fff EE ηηρ −= 1 ) 
is the crack opening at the peak stress of the crack bridging law due to fibres, and 

ffu Lw =,  is the ultimate crack opening of the bridging law due to fibres. 
 
 
COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL RESULTS 
 
The fracture behaviour of plain and fibre-reinforced concrete coupons under tensile 
loading is examined herein by means of the two computational models being compared. 
The first one, based on a continuum approach, has been implemented in an in-house 
code, whilst the second one, based on a lattice approach, has been implemented in the 
subroutine UMAT of the commercial FE code ABAQUS. 

An experimental campaign related to prismatic Reactive Powder Concrete (RPC) 
specimens subjected to tensile stress is examined [18].  The specimens have a total 
length equal to 700 mm and cross section of 50x20 mm (Fig. 2).  The mechanical 
parameters of the RPC concrete are the following: Young modulus GPa 50=E , 
ultimate tensile strength MPa 0.8=tf , fracture energy N/m 30=fG [19].  The relevant 
parameters for unidirectional steel fibres are: fibre volume %0.2=fη , Young modulus 

GPa 210=fE , fibre length mm132 =fL and diameter mm16.0=fD , while the limit 
matrix-fibre shear stress is equal to MPa 0.20 =τ .  The analysis is performed under 
displacement control by imposing a progressive upward vertical displacement at the top 
of the specimens.  A plane stress condition is assumed.  Five orientations of fibres are 
considered ( °°°°°= 90,60,45,30,0ϕ ) together with the cases of random fibres and of 
plain concrete (no fibres). 

In Fig. 2, some crack paths of the continuum and the lattice models are shown.  
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Figure 2. (a) Geometry of the specimen [18]; (b, c) crack path for the continuum model 
for fibre orientation of 45° and 90°;  (d, e) crack path for the lattice model for fibre 

orientation of 45° and 90°. 
 
 
 
Vertical load against top vertical displacement curves are reported in Figure 3a-b.  The 
curves have the same slope in the elastic branch both for the continuum model and for 
the lattice one, while the peak load is slightly different, up to 20%.  Further, another 
difference between the two models is the residual strength in the post-peak stage.  In 
Figure 4, the crack orientation α  against the fibre orientation ϕ , obtained through the 
continuum model and the lattice model, are compared with the orientation observed 
experimentally [18].  The continuum model shows an evident dependence of the initial 
crack orientation on the fibre orientation, while such a dependence is negligible for the 
lattice model. 
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Figure 3. Vertical load against top displacement according to (a) the continuum FE 
model and (b) the lattice model. 
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CONCLUSIONS 
 

In the present paper, the crack formation and propagation in random and unidirectional 
fibre-reinforced quasi-brittle materials have been analysed by using a continuum FE 
model and a microstructural lattice model.  The main theoretical aspects to describe the 
matrix fracture and the fibre bridging effects have been outlined, and experimental 
results related to fibre-reinforced concrete specimens under tensile loading have been 
examined. 
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