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ABSTRACT. The fatigue assessment of metallic structural components under uniaxial 
cyclic loading is traditionally tackled through experimental methods such as the S-N 
curve approach.  For more complex variable stress states, such as multiaxial stress 
histories, the fatigue safety can be analysed by employing a physics-based damage 
mechanics approach.  On the other hand, fatigue failure can be recognized as the result 
of a stable crack propagation up to a critical condition and, in this context, the 
availability of suitable laws to properly describe and quantify the crack propagation is a 
crucial aspect. 
In the present paper, a fatigue crack propagation law for both short (Low-Cycle-
Fatigue) and long crack regime (High-Cycle-Fatigue) is discussed based on damage 
mechanics concepts.  Fatigue crack growth law and damage mechanics approach are 
compared in order to determine both the damage value according to a given fatigue 
crack growth (FCG) law  and  the crack length associated to a given mechanical 
damage of the fatigued material.  Such two methods are shown to be different 
formulations of the same physics-based approach to fatigue phenomena. 
 
 
INTRODUCTION 
 
Mechanical fatigue failure in a material is a complex phenomenon characterized by 
crack nucleation followed by crack propagation up to the final collapse.  The total 
fatigue life can be theoretically computed as the sum of the number of loading cycles for 
crack nucleation and that for crack propagation [1-4], but approaches based on 
experimental observations are still widely used in practical applications [5].  The total 
fatigue life is usually crack-nucleation dominated in smooth components (defect-free 
structures), while it is propagation-dominated in initially flawed structures. 
Damaged-based fatigue evaluations have been proposed by several researchers [6-9] 
with the aim to quantify the degree of material deterioration at a given point or in a 
limited region of a cyclically stressed material.  The damage approach does not take into 
account any connection between the mechanical deterioration level and the extent of the 
growing cracks, while this connection is examined by the crack propagation approach 
(for example, the Paris law [10, 11]).  In the present paper, the relationships between 
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such two approaches to fatigue phenomena are discussed for both long and short cracks 
[12]. 
 
 
DAMAGE MODEL 
 
Damage assessment 
In order to evaluate the damage increment in a given region of an isotropic material, the 
current stress state conveniently expressed through the stress invariants can be used.  
Damage quantification can be obtained by means of a so-called endurance surface 0=E  
depending on the current stress state.  A necessary condition to get damage increasing is 
given by 0>E , while 0<E  corresponds to a not-damaging stress state. 
Such an endurance function can be written as follows [8, 9]: 
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where 521 ,....,, aaa  and 0σ  are material constants to be determined for a given material, 
whereas the stress tensor invariants, 321 ,, III , and the deviatoric stress invariants, 

32, JJ , are functions of the stress tensor σ  and the effective deviatoric stress tensor es , 
respectively.  Note that be sss −= , where bs  is the deviatoric stress tensor, 

)( πδσ ⋅−== ijijijss  is the current deviatoric stress tensor, ijδ  is the Kroneker delta 
function, 3/iiσπ =  is the hydrostatic stress.  The deviatoric stress tensor bs  allows the 
endurance surface to evolve in the stress space.  Moreover, damage increment takes 
place only if 0>dE  [8, 9].  It can be observed that damage is a positive non-decreasing 
scalar parameter, i.e. at each load step of the fatigue process the damage increment dD  
is greater than or equal to zero ( 0≥dD ).  The endurance function ( )eE sσ,  can evolve 
depending on the change of the deviatoric back stress tensor bs  during the stress history, 
and such a change can be expressed as follows [9]: 
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where C  and h  are material parameters, and dE  is the endurance function increment. 
 
Crack nucleation-dominated fatigue life  
Initially undamaged structures have a crack initiation-dominated life while the crack 
propagation phenomenon can be assumed to be negligible.  In such situations, the 
damage increment dD  can be assumed to be independent of the current damage level D  
(associated to the crack length) since the crack is not present till the final failure.  
Therefore, damage can be simply expressed as a function of E  and dE  [9]: 
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where A and B are two material constants. 
 
Crack propagation-dominated fatigue life 
For initially flawed structures, the damage increment can be assumed to depend on the 
current damage D , that is, on the previously accumulated damage (and the crack growth 
rate depends on the current crack size, according to the Paris law).  In other words, a sort 
of ‘memory effect’ takes place and, therefore, the damage increment dD  should be 
expressed as a function of E , dE  and the current damage D , and a possible expression 
could be: 
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where q is a material constant. 
The presence of stress raisers can facilitate the early nucleation of surface cracks and, 

therefore, the total life for notched structural components can be assumed to be crack 
propagation-dominated instead of crack nucleation-dominated.  Since the stress state in 
such situations is characterised by a significant gradient in a small region around the 
notch hot spot H , such a non-homogeneous stress field can be taken into account by 
inserting a reducing factor 1<G  in the damage increment [8]: 
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where V  is a material constant and γ  the stress field parameter, representing the local 
absolute value of the stress field gradient computed at point H .  In such a situation, the 
principal stress direction can be assumed to be be almost constant in a small region 
around the hot spot H.  In the following, for the sake of simplicity, structures without 
stress raisers are examined, i.e. 0=γ , 1=G .  Note that, for initially undamaged 
structures, the damage increment dD  can be computed by simply setting 0=q  in Eq.(4). 
 
Evaluation of the damage model parameters 
The quantities involved in the presented damage model (such as E , bs  and the damage 
increment dD ) depend on several parameters ( 521 ,...,, aaa , 0,,,,,, σqVhCBA ).  As is 
shown in Refs [8, 9], some of the above parameters can be obtained from analytical 
relationships for simple uniaxial cyclic loading, whereas the remaining parameters can 
be estimated through experimental results and a best-fit approach based on the genetic 
algorithm (GA) method [13-15]. 

The case of crack propagation-dominated fatigue life (such as in initially damaged 
structural components) can be assumed to be correctly described by the Paris law, 
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suitable for stable crack propagation in the LEFM regime, or by the Donahue et al. law 
[16], suitable also for short cracks. 

For a cyclic loading with zero mean value and constant stress amplitude (R = -1) and 
assuming absence of stress gradient effect, the stress invariants and the deviatoric stress 
invariants can be easily determined, and the damage increment given by Eq. (4) becomes 
[8]: 

( ) [ ]

dE
p
aa

p
aaAD

dEWADdEEADdD
B

af

W

q

BqBq

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅−⋅+⋅+⋅⋅⋅=

=⋅−⋅⋅⋅=⋅⋅⋅=

−

⋅
434214444 34444 21

0

1
135

1
1

0

27
2

σσ

σσσσ

σσ

 
(6)

The integration of the damage increment from the initial damage 0D  up to the generic 
damage D , occurring after Nn <  cycles, can be performed [9]: 
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where N  is the number of loading cycles up to the final collapse (i.e. when 1=D ), and 
βσ  is equal to the constant stress amplitude aσ  of the cyclic loading.  From the above 

relationship, we can note that )(nD  = 0D  for n = 0, and )(nD  = 1 for n = N . 
 
 
CRACK GROWTH LAWS 
 
As is well-known, the Paris law [11] describes the stable crack propagation regime for 
long cracks when the LEFM hypothesis holds (Fig. 1).  On the other hand, the Donahue 
et al. [16] equation is suitable also for the near-threshold regime. Such laws are expressed 
by: 
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where a  is the crack length, mC ,'  are constants depending on the material, KΔ  is the 
effective Stress-Intensity Factor (SIF) range, and thKΔ  is the threshold SIF.  Let us 
define a crack size-based damage PD  for the material : 
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Fig. 1. Qualitative trend of the crack growth rate against the SIF range KΔ  for metallic 

material: the Paris law holds for intermediate KΔ  values (the Klesnil and Lucas 
relationship [17] is reported). 

 
 
According to such a definition, the damage model presented above and the fatigue 
assessment based on the crack propagation law can be related to each other, that is, the 
crack size Da  related to the damage D  can be determined as is described in the 
following.  Note that tha  is the initial crack size below which the propagation does not 
take place for stress amplitude lower than or equal to aσ . 

After n loading cycles, the corresponding crack size caa <  can be easily obtained 
from the integration of the Donahue law ([16], see Eq. (82)) for the Griffith problem, i.e. 
for the simple case characterised by the geometric factor aaY ∀= ,1)( : 
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where thaaa −= 00*  and thaaa −=*  (for long cracks: aa ≅* ).  The above relationship 
can be rewritten as follows: 
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where thcc aaa −=* , 2/)2(* mm −= .  From the last expression in Eqs (7), the 
relationship between the number of loading cycles n and the current damage )(nD  can 
be obtained: 
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Finally, by equating the number of load cycles n (see Eq. (11) and Eq. (12)), we get a 
relationship between PD  based on the Paris law and )(nDD =  according to the damage 
model : 
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and the crack size Da  corresponding to the damage D  becomes (see Eq. (9)): 

( )[ ]
*/1

*
0* *1

*2
ln1)()(

m
m

thcPm
c

thcthPthcthD aaD
aN

DaaaDaaaa ⎥
⎦

⎤
⎢
⎣

⎡
+−⋅

⋅Ξ⋅
+−⋅−+=⋅−+=  (14)

Then, by substituting the expression )(2ln NnD −⋅Ξ=  (obtained from Eq. (12)) in 
Eq. (14), the crack growth rate dndaD /  can be determined: 

[ ] [ ]*
0

*
*)1(

*
0** )*(1)*(1

*
)(1

**
* m

thcP
m

m

m
thcPm

c
m
c

cD aaDaaD
aN

Nn
amN

a
dn

da
+−⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

⋅
−

+⋅
⋅⋅

=

−

 (15)

Since the terms Ξ,N  and ca  depend on the stress amplitude aσ , the crack growth 
rate based on the present damage model is dependent on aσ .  Such a dependence is 
shown to not affect significantly the results. 
 
 
APPLICATION 
 
The above damage model and the crack propagation-based assessment are employed to 
examine the fatigue behaviour of a real metallic material.  The damage model 
parameters connected to the Wöhler regime (referred to the crack initiation-dominated 
regime) are firstly determined through the damage increment defined in Eq. (3).  Then, 
the parameters related to the crack propagation-dominated life (Eq. (4)) are obtained, 
and the corresponding crack growth rate (Eq. (15)) is graphically represented. 

The material to be examined is the Aluminium Alloy Al 2024-T3 [18] which is 
characterized by the fatigue-fracture parameters reported in Tab. 1. 

The damage model parameters ( 521 ,...,, aaa , 0,,,,,, σqVhCBA ), determined through 
the damage increments in Eqs (4, 6)  neglecting the stress gradient effect ( 0=γ ) and 
assuming 1== qh   –   corresponding to  the crack initiation-dominated fatigue  (Wöhler 
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Tab. 1. Mechanical characteristics and damage parameters of the Al. Alloy 2024-T3 

    Damage models 
  Paris law constants  Wöhler regime Paris regime 

 

fcK   45 MPa m  A 6.128E-14 2.170E-16 

thK   3.6 MPa m  B 0.026 0.412 

C’  1.86E-11 m/cycle σ0 177.4 MPa 152.0 MPa 
m  4.05 a1 0.402 0.034 
   a4 1.480 1.270 

   a5 -0.958 -0.819 
   C 0.474 0.159 

 
 
 
 
 

regime) and the crack propagation-dominated fatigue (Paris regime) – and by applying 
the genetic algorithm (GA) procedure [9], are listed in Tab. 1. 

The experimental S-N curve (continuous line) and the constant amplitude fatigue life 
evaluated through the present damage model for the Wöhler regime (round symbols) are 
shown in Fig. 2a.  Note that the stress amplitude aσ  values used to compute the model 
parameters through the GA method are indicated by square symbols.  As can be 
observed, the present model (round symbols) satisfactorily approximates the material 
fatigue curve (continuous line) even near the conventional fatigue limit region. 

In Fig. 2b, the crack growth rate (expressed in m/cycle) against the SIF range 
aK a πσ=Δ   (expressed in Pa m1/2)  is  displayed  for  both  the classical  Donahue law 
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Fig. 2. (a) Wöhler curve (continuous line) and evaluation through the present damage 
model for the Wöhler regime according to Eq. (3) (round symbols), for Aluminum Al 
2024-T3. (b) Crack growth rate curves obtained from the Paris law and the present 

damage model. 
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(dashed line with round symbols) and the damage model represented by Eq. (15) for 
three different values of aσ .  The damage model curves present nearly the same slope 
for intermediate KΔ  values (Paris region), whereas 0/ →dndaD  for thKK →Δ .  
Further, an unstable crack propagation ( ∞→dndaD / ) can be noticed for fcKK →Δ , 
as was experimentally observed and taken into account in the Klesnil and Lucas [17] and 
Forman et al. [19] relationships.  Note that the stress amplitude aσ  dependence of the 
damage model curves is not significant since the three curves in Fig. 2b are almost 
superposed. 
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