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ABSTRACT. A kinked crack propagating in a periodic self-balanced multiaxial 
microstress field having self-similar characteristics is considered.  The kinking angle of 
the crack is shown to depend on the properties of the microstress field.  Using the 
Richardson’s expression for self-similar fractals, the fractal dimension of the crack is 
expressed as a function of the kinking angle.  Crack size effect on the fatigue crack 
growth rate in the Paris regime can be interpreted by the present model.  Further, the 
Kitagawa diagram can be interpreted by showing that the threshold condition of fatigue 
crack growth is affected by the crack kinking angle which, in turn, is a function of the 
ratio between crack length and microstructure characteristic length. 
 
 
INTRODUCTION 
 
During fatigue propagation, cracks tend to deflect as a result of far-field multiaxial 
stresses, microstructural inhomogeneities, residual stresses, dispersion of the material 
properties, and so forth (e.g. see Ref. [1]).  Threshold condition and rate of fatigue crack 
growth appear to be significantly affected by the degree of deflection of cracks.  This 
might be induced by the fact that the value of the near-tip stress intensity factors of 
kinked or branched fatigue cracks can be considerably different from that of a straight 
crack of the same projected length.  With reference to two-dimensional elastic problems, 
analytical solutions for stress intensity factors of kinked cracks are available in the 
literature [2-5].  Some of such results have been used to gain a quantitative understanding 
of the relationship between the fatigue crack growth rate and the degree of deflection in 
the fatigue crack path (e.g. see Ref. [6]).  In comparison to the highly idealised picture of 
a straight crack, a kinked crack represents a first step towards the description of actual 
irregularities of fracture surfaces.  A further step in that direction is the use of the fractal 
geometry, as has been shown in several publications: for example, fractal geometry 
applications to size effect-related fatigue problems have been discussed in Refs [7-11]. 

In the present paper, following a recent work by the authors [12], the kinking angle is 
correlated to a periodic self-balanced multiaxial microstress field having self-similar 
characteristics.  Using the Richardson’s expression for self-similar fractals, the fractal 
dimension of the crack is expressed as a function of the kinking angle.  Crack size effect 
on the fatigue crack growth rate in the Paris regime can be interpreted by the present 
model.  Further, the Kitagawa diagram can be interpreted by showing that the threshold 
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condition of fatigue crack growth is affected by the crack kinking angle which, in turn, is 
a function of the ratio between crack length and microstructure characteristic length. 
 
 
A KINKED CRACK IN A SELF-BALANCED MICROSTRESS FIELD 
 
Stress Field and Projected SIFs 
Let us consider an infinite plate (see Figs 1 and 2, where the y-axis is a symmetry axis 
for the crack), submitted to remote normal stress )(∞σ  along y-axis and shear stress )(∞τ .  

Assume the existence of a self-balanced microstress field, characterized by a material 
length d  (for instance due to microstructural inhomogeneities, see Ref. [1]), with two 
non-zero stress components: a normal stress along the y-axis adxf σσ ~)/(~ =  and a shear 
stress adxf ττ ~)/(~ = .  For the sake of simplicity, we assume ( ) ( )dxdxf π2cos/ =  (this 
could be regarded as a first order approximation through Fourier series of a general 
periodic function), Fig. 2.  Under the uniform remote stresses )(∞σ  and )(∞τ , the remote 

SIFs of the projected crack of semi-length l aligned with the x-axis are lKI πσ )()( ∞∞ =  

and lKII πτ )()( ∞∞ = .  Under the self-balanced microstresses σ~  and τ~ , the micro SIFs of 
the projected crack are shown in Ref.[12] using the Buckner’s superposition principle: 
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Figure 1. Kinked crack in an infinite plate. 
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where 0J  is the zero-order Bessel function.  The total value of each projected SIFs is 
equal to the sum of the remote and micro stress contributions, that is, 

IIIIIIIII KKKKKK ~,~ )()( +=+= ∞∞ . 
 
Local SIFs and Kinking Criterion 
During propagation in the above self-balanced multiaxial microstress field, the crack is 
assumed to kink at each reversal in the microstress spatial courses.  Now, considering a 
periodically-kinked crack (of projected crack length l2 ), the local SIFs of the crack can 
be expressed through KI and KII  as follows [5]: 
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Note that Eq. 2 is based on the assumption that only the leading kinking angle of the 
periodically-kinked crack is influencing the local SIFs, and is valid (with good 
approximation) for 3.0>ab  ( a  and b  are shown in Fig.1).  The classical criterion of 
Erdogan and Sih [13] is adopted to describe the mixed-mode crack propagation under the 
local SIFs kI and kII.  Accordingly the kinking angle β, defined with respect to the generic 
inclined axis of the crack, is given by [13]: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
±= 8

4
1

4
1arctan2

2

II

I

II

I

k
k

k
k

β        (3) 

 

Figure 2. Self-balanced microstress field and periodically kinked crack. 
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EXTENSION TO MODE-I FRACTAL CRACKS UNDER FATIGUE LOADING 
 
Now let us focus our attention on nominally Mode I cracks, i.e. cracks submitted to a 
remote Mode I cyclic loading.  Hence, for an infinite plate, the SIF ranges related to the 
projected crack of semi-length l, according to Eq. 1, are given by: 
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where we assume that also the microstress field is time varying (e.g. 
)(~min)(~max~ tt a

Tt
a

Tt
a σσσ

∈∈
−=Δ )  within the loading period T (constant amplitude fatigue 

loading). 
 

Under the above loading conditions, cracks tend to propagate “on average” along the x 
axis following a zig-zag pattern, where the kinking angle ϑ is a function of the micro-to-
remote stress ratios.  In general, it turns out that the crack kinking angle decreases as the 
crack length increases with respect to the material microstructural length d, namely 

)/( dlϑϑ = , Fig. 3a [12]. 
 
 
Self-Similarity 
Considering a self-similar like microstress field, the zig-zag pattern of the crack shown in 
the previous Section is assumed to be followed in a self-similar manner at any scale of 
observation of the crack itself (Fig. 3b).  The above assumption allows us to extend the 
above periodically-kinked crack model within the framework of the fractal geometry.  
Accordingly, following the fundamental Richardson’s expression [14], the fractal 
dimension D  ( 21 ≤≤ D ) is linked to the kinking angle ϑ: 

( )ϑcos2ln
2ln

=D       (5) 

The above relationship yields the limit values of D = 1 for ϑ = 0° and D = 2 for ϑ = 45°, 
respectively.  Since )/( dlϑϑ = , Eq. 5 shows that the fractal dimension decreases as the 
crack length increases with respect to the material characteristic length (Fig. 3c). 
 
Scale-Invariant SIF 
From a reconsideration of the energetic approach by Griffith, it has been demonstrated 
that the SIF range for a fractal crack under Mode I fatigue loading is represented by the 
following scale-invariant quantity *

IKΔ  [8]: 

2
1

*
D

II lKK
−

Δ=Δ      (6) 
The physical dimensions of *

IKΔ  are dependent on the fractal dimension D, and are equal 

to 2
2 D

LF
+

−
⋅ ,  with F  = force and L  = length. 
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Figure 3. Illustrative sketches (not to scale) of: (a) A periodic zig-zag crack with kinking 
angle decreasing with increasing crack length; (b) First four iterations in the generation 
of a self-similar zig-zag crack; (c) A self-similar zig-zag crack at the 4th iteration with 

fractal dimension decreasing with increasing crack length. 
 
 

Crack Growth Rate 
Crack kinking induces a geometrical effect on crack growth rate.  Since the fractal length 
of the crack *l  is equal to Dl , the derivation chain rule yields a relation between the 
scale-invariant crack growth rate dNdl *  and its nominal counterpart dNdl  [8]: 

dN
dlDl

dN
dl

dl
dl

dN
dl D 1

**
−==     (7) 

 
Fatigue Crack Growth Law 
According to Ref. [8], the following modified Paris law can be used to describe the 
fatigue crack growth for a fractal crack 

( )m
IKC

dN
dl *

*
Δ=      (8) 

where *l  is the renormalized crack length  having physical dimension DL . 
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By substituting Eqs 6 and 7 in Eq. 8,  the following fatigue crack growth law in terms 
of the nominal quantities dNdl  and IKΔ  can be obtained [8] : 
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Equation 9 explicitly depends on the crack length l and, hence,  accounts for crack 

size effects on the fatigue crack growth rate.  In other words, according to the classical 
Paris law, the fatigue crack growth rate implicitly depends on the crack length l  because 
of the LEFM dependence of IKΔ  on l  ( lK I πσΔ∝Δ )  and, in addition to such a 

ml 5.0  LEFM-dependence, a mmDl 5.0)5.01)(1( ++−  fractal-dependence of the fatigue crack 
growth rate  is proposed in the modified Paris law (Eq. 9).  A thorough discussion of the 
variation of the fatigue crack growth rate as the crack length increases can be found in 
Ref. [8]. 

It is worth recalling that, during fatigue crack propagation, the increment of crack 
length might be small in comparison with the initial crack (or, in some case, notch) 
length.  In such a case, the crack length l  can be assumed constant during crack 
propagation and equal to the initial crack length and, therefore, the proposed modified 
Paris law in Eq. 9 describes, similar to the classical Paris law, a straight line with slope m 
in the bilogarithmic plot of Nl dd  against IKΔ . 
 
 
TWO EXPERIMENTAL EVIDENCES OF CRACK SIZE EFFECTS IN FATIGUE 
 
Fatigue Crack Growth 
Assuming that the crack length l is smaller than a few times the microstress length scale 
d, the kinking angle ϑ of the zig-zag crack remains approximately constant according to 
the model described above.  This yields self-similar fractal cracks, namely cracks having 
constant fractal dimension. 

Based on this assumption, some experimental observations related to fatigue crack 
propagation in plain normal concrete and high-strength concrete [15, 16] can be described 
through Eq. 9.  The maximum aggregate size, herein taken to be equal to the microstress 
length scale d, is equal to 12.7 and 9.5 mm for normal and high-strength concrete, 
respectively.  The experimental tests, concerning 2D geometrically similar beams with an 
edge crack under pulsating three-point bending, show an evident crack size effect leading 
to different values of the Paris coefficient, function of the initial crack length, while the 
Paris exponent remains constant (details of the analysis of the experimental data [15, 16] 
can be found in Ref. [8]). 

The experimental scale range is 1:4 and 1:8 for normal and high-strength concrete, 
respectively (that is, initial crack length ranging from 6.3 to 25.2 mm and from 6.3 to 
50.4 mm for normal and high-strength concrete, respectively).  The fitting of the 
experimental data leads to a power-type relationship between Paris coefficient (see term 
in square bracket of Eq. 9) and initial crack length.  From such a relationship, the fractal 
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dimension of the crack can be extracted.  For a nominally Mode I zig-zag crack 
propagating within a shear microstresss field, the results are: (a) fractal dimension D = 
1.76, kinking angle ϑ = 42°, micro-to-remote stress ratio )(~ ∞ΔΔ στ a  = 1.8 for normal 

concrete;  (b) D = 1.27, ϑ = 30°, )(~ ∞ΔΔ στ a  = 1.0 for high-strength concrete. 

 
Fatigue Threshold 
Assuming that the crack length l can be much greater than the microstress length scale d, 
the kinking angle ϑ of the zig-zag crack decreases with increasing l, according to the 
model described above.  This yields self-affine fractal cracks, namely cracks having a 
varying (decresing in the present case) fractal dimension [14]. 

Based on this assumption, the experimental results obtained by Tanaka and co-workers 
[17] for mild steel plate specimens under fully reversed bending are herein interpreted 
through the proposed model.  Such results are related to ferritic and pearlitic steels with 
carbon content of 0.20% and grain size (herein taken to be equal to the microstress length 
scale d) of the ferritic phase equal to 7.8 and 55 μm, respectively.  For various values of 
the crack length (ranging from 6 to 1383 μm), the threshold stress intensity range ΔKIth is 
experimentally evaluated. 

Figure 4 shows the comparison between experimental results (symbols) and 
theoretical curves (continuous line and dashed line).  Such curves are obtained from the 
present model, see Eq. 6, considering )1(5.0

0,
−Δ=Δ D

IthIth lKK  ( =Δ 0,IthK fatigue 

threshold SIF range of long cracks, here assumed as the scale-invariant quantity; 0,IthKΔ  
equal to 5.2 and 6.2 MPa√m for small-size grain and large-size grain materials, 
respectively) and )(~ ∞ΔΔ στ a  = 2.07 (this corresponds to ϑ = 45° for 0→dl ).  Note 

that the value of ϑ , and hence of the fractal dimension D (see Eq. 5), decreases with dl . 
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Figure 4. Experimental data [17] in the l-ΔKIth bilogarithmic plane and corresponding 
theoretical curves. 
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CONCLUSIONS 
 
The presence of a periodic self-balanced microstress field is shown to produce a 
periodically-kinked crack path with a decreasing kinking angle as the crack length 
increases with respect to some material characteristic length.  Such a periodically-kinked 
crack model is extended to fractal geometry using a self-similar generation procedure, so 
that the fractal dimension becomes a function of the kinking angle of the crack. 

Crack size effect on the fatigue crack growth rate in the Paris regime (that is, at equal 
SIF range, the rate decreases as the crack length increases) can be interpreted by the 
present model.  Further, the model offers a theoretical basis (within the framework of the 
fractal geometry) to explain the variation of fatigue threshold condition with the crack 
length (Kitagawa diagram). 
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