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ABSTRACT. Progressive cold drawing in eutectoid steels produces a preferential 

orientation of the pearlitic micorstructure in the wire axis or drawing direction. This 

affects the posterior behaviour of the steels under environmentally assisted cracking 

(EAC) conditions. The experimental results show that cold drawing induces strength 

anisotropy in the steel, and thus the resistance to EAC is a directional property that 

depends on the angle in relation to the drawing direction. Therefore, an initial 

transverse crack changes its propagation direction to approach that of the wire axis, 

thus producing mixed mode propagation, the deflection angle being an increasing 

function of the cold drawing degree. This experimental result may be explained by 

micro-mechanical considerations on the basis of the lamellar microstructure of the 

steels. A relationship is established between the microstructural angles and the 

deflection angles of the macroscopic crack in EAC, thus providing a materials science 

type relationship between the microstructure and the macroscopic crack paths. 

 
 

INTRODUCTION 
 
High-strength prestressing steel wires are manufactured by cold drawing to increase 
both the yield strength and the ultimate tensile strength (UTS) of the steel and allow it 
to be used as the main constituent of prestressed concrete structural elements. The 
manufacture technique consisting of cumulative drawing of pearlitic wires through a 
series of dies with diameters progressively thinner produces important microstructural 
changes in the material which could influence its posterior performance. Evidence exists 
in the scientific literature showing the anisotropic fracture behaviour of prestressing 
steel in air [1], as well as in aggressive environments promoting environmentally 
assisted cracking (EAC) in the material [2-4]. 

This paper offers a materials science approach to the modelling of EAC behaviour of 
cold drawn prestressing steel wires. The approach is based on linking the microstructure 
of the steels (progressively oriented as a consequence of the manufacture process by 
cumulative cold drawing) with their macroscopic EAC behaviour (increasingly 
anisotropic as the degree of cold drawing increases). Special attention is paid to the 
evolution of the macroscopic crack path as the degree of cold drawing increases. 
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MATERIALS 
 
Materials were high-strength steels taken from a real manufacturing process. Wires with 
different degrees of cold drawing were used. The different steels were named with  
digits 0 to 6 indicating the number of drawing steps undergone, so steel 0 is the hot 
rolled bar (base material) which is not cold drawn at all, and steel 6 represents the 
prestressing steel wire (final commercial product) which has suffered six cold drawing 
steps. Table 1 includes the diameter (Di), the yield strength ( 02) and the ultimate tensile 
strength (UTS) of the steels. There is a clear improvement of (traditional) mechanical 
properties as the cold drawing proceeds, but the consequences of this manufacture 
technique from the point of view of the fracture and EAC of the steels are not well 
known and require further research. 

Table 1. Diameter (Di), yield strength ( 02) and UTS. 
______________________________________________________________________ 
 
 Steel 0 1 2 3 4 5 6 
______________________________________________________________________ 
 
 Di (mm) 12.00 10.80 9.75 8.90 8.15 7.50 7.00 
 02 (GPa) 0.686 1.100 1.157 1.212 1.239 1.271 1.506 
 UTS (GPa) 1.175 1.294 1.347 1.509 1.521 1.526 1.762 
______________________________________________________________________ 

MICROSTRUCTURAL EVOLUTION WITH COLD DRAWING 

Metallographic techniques were applied to reveal the pearlitic microstructure of the 
progressively drawn steels. Attention was paid to the evolution with cold drawing of the 
two basic microstructural levels: the pearlite colonies (first microstructural level) and 
the pearlitic lamellae (second microstructural level). Sections were prepared from all 
steel wires and mounted to undergo four grinding stages, from 320 to 1200 grit, and 
three polishing passes followed by etching in Nital 2%. The pearlite colonies were 
observed by optical microscopy, whereas scanning electron microscopy was required to 
resolve the lamellar structure of the pearlite. 
 With regard to the first microstructural level, Fig. 1 shows the optical micrographs of 
two different stages of the cold drawing process where an increasing deformation 
(slenderizing) is observed in the colonies, which determines their angle in relation to the 
axis. At the same time, a progressive orientation of the colonies in the cold drawing 
direction (wire axis) can be seen in the longitudinal metallographic sections. 
 In the matter of the second microstructural level, Fig. 2 shows the scanning electron 
micrographs of two different stages of the cold drawing process where an increasing 
closeness of packing is observed in the lamellae, with decrease of the interlamellar 
spacing. Again a progressive orientation of the pearlitic lamellae in the cold drawing 
direction (wire axis) can be seen seen in the longitudinal metallographic sections. 
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Figure 1. Pearlite colonies (first microstructural level) in steels 0 (left) and 6 (right). 

   
Figure 2. Pearlite lamellae (second microstructural level) in steels 0 (left) and 6 (right). 

 
 Therefore, both the pearlite colonies and the pearlitic lamellar microstructure tend to 
align to a direction quasi-parallel to the wire axis as cold drawing proceeds, thus 
inducing a progressive strength anisotropy in the steel, the degree of anisotropy being 
an increasing function of the level of cold drawing (or strain hardening) in the steels. 
 

 

EXPERIMENTAL PROGRAMME 

 
To relate these microstructural results to the macroscopic EAC behaviour, slow strain 
rate tests were performed on transversely precracked steel wires immersed in aqueous 
environment and subjected to axial loading. After precracking, samples were placed in a 
corrosion cell containing aqueous solution of 1g/l Ca(OH)2 plus 0.1g/l NaCl (pH=12.5). 
The experimental device consisted of a potentiostat and a three-electrode assembly: 
metallic sample (working electrode), platinum counter-electrode and saturated calomel 
electrode (reference). Tests were performed at constant electrochemical potential with 
the two values of –1200 mV SCE and –600 mV vs SCE, the former associated with the 
cathodic regime of cracking for which the environmental mechanism is hydrogen 
assisted cracking (HAC), and the latter linked with the anodic regime of cracking for 
which the environmental mechanism is localised anodic dissolution (LAD), cf. [5,6]. 
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CONSEQUENCES OF COLD DRAWING ON CRACK PATHS 

 
The experimental results showed a fundamental fact in both HAC and LAD: the EAC 
behaviour becomes more anisotropic as the degree of cold drawing increases, so a 
transverse crack tends to change its propagation direction to approach that of the wire 
axis, and thus a mode I growth evolves towards a mixed mode propagation. It may be 
assumed that the microstructural orientation in drawn steels influences the macroscopic 
behaviour, so that the EAC resistance is a directional property which depends on the 
microstructural orientation in relation to the cold drawing direction (strength anisotropy 
with regard to EAC behaviour). This anisotropic EAC behaviour of the drawn steels can 
be evaluated by means of the crack path or fracture profile after the EAC tests. 
 

Hydrogen Assisted Cracking (HAC) 

Fig. 3 shows  the evolution of crack paths with cold drawing under HAC conditions, 
where a progressive change in the macroscopic topography as the cold drawing 
increases was observed in all fracture surfaces. Fig. 3a offers a 3D-view of these 
fracture surfaces, showing that mixed mode crack growth appears from a certain cold 
drawing level, and is associated with crack deflection which starts just at the tip of the 
fatigue precrack, i.e., a deviation in the crack growth path, from its initial fatigue crack 
growth path, appears at the very beginning of the HAC test. 
 Fig. 3b shows the geometric parameters describing the crack path, whereas the 
evolution of the fracture profile as the degree of cold drawing increases is given in Fig. 
3c. In the first steps of cold drawing (specimens 0 and 1) the crack growth develops in 
mode I in both fatigue precracking and HAC. In steel 2 there is a slight deflection in the 
hydrogen-assisted crack, and this deflection is not uniform along the crack front but 
produces a wavy crack at different levels, and finally follows again the direction 
perpendicular to the wire axis. The same happens in steel 3, but in this case the 
deviation angle is higher. For the most heavily drawn steels (4 to 6) the crack deflection 
takes place suddenly after the fatigue precrack and the deviation angle is even higher 
and more or less uniform along the whole crack front. In these last stages of cold 
drawing, not only crack deflection but also crack branching are seen just after the 
fatigue precrack tip, i.e., there are two pre-damage directions (crack embryos), only one 
of which becomes the final fracture path. 
 
Localised Anodic Dissolution (LAD) 

Fig. 4 shows  the evolution of crack paths with cold drawing under LAD conditions, 
where a progressive change in the macroscopic topography as the cold drawing 
increases was observed in all fracture surfaces. Fig. 4a offers a 3D-view of these 
fracture surfaces. For the slightly drawn steels (0, 1 and 2), the fracture surfaces were 
macroscopically plane and oriented perpendicularly to the loading axis. Steel 3 shows a 
certain angle between the plane of the fatigue precrack and the fracture propagation 
direction in aggressive environment, evolving from mode I that maintains the crack 
propagation in the fatigue precracking plane to a mixed mode cracking, the growth 
direction changing to form an angle with the fatigue plane. In the most heavily drawn 
steels (4, 5 and 6) the deviation from the fatigue precrack plane was even higher. 
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Figure 3. Evolution of crack paths with cold drawing (HAC environmental conditions): 
(a) general appearance of the fracture surfaces; (b) geometric parameters describing the 
crack path; (c) evolution of fracture profiles; f: fatigue crack growth; I: mode I cracking; 
II: mixed mode cracking; F: final fracture by cleavage at the critical situation. 
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Figure 4. Evolution of crack paths with cold drawing (LAD environmental conditions): 
(a) general appearance of the fracture surfaces; (b) geometric parameters describing the 
crack path; (c) evolution of fracture profiles; f: fatigue crack growth; I: mode I cracking; 
II: mixed mode cracking; F: final fracture by cleavage at the critical situation. 
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 In the steels with intermediate and high levels of cold drawing, the macroscopic 
crack path presents three characteristic zones (Fig. 4b). After the fatigue precrack there 
is a first propagation in its own plane (mode I cracking) over a distance xI; after this the 
crack changes its propagation direction and a mixed mode propagation takes place over 
a distance xII (horizontal projection); finally the crack path follows the original direction 
up to final fracture. Fig. 4c offers the evolution of the fracture profile of all the steels. In 
heavily drawn steels (4 to 6), the mode I propagation distance decreases as the cold 
drawing degree increases, the step appears before and is associated with increasing 
values of the angle  and the step height h, i.e., the crack growth path approaches the 
wire axis or cold drawing direction. 

RELATIONSHIP BETWEEN MICROSTRUCTURE AND CRACK PATHS 

In this section, a relationship is established between the microstructure of the steels 
(progressively oriented as a consequence of cold drawing) and the macroscopic crack 
paths (also evolving with the degree of cold drawing in the steels). Fig. 5a shows a plot 
of the evolution of the orientation angles of the pearlitic colonies and lamellae with cold 
drawing (angle  between the transverse axis of the wire and the major axis of the 
pearlite colony, modelled as an ellipsoid; angle ' between the transverse axis of the 
wire and the direction marked by the pearlite lamellae in the longitudinal metallographic 
section). In both cases there is an increasing trend with cold drawing, i.e., the pearlite 
colonies and lamellae become increasingly aligned in the drawing direction.  
 Fig. 5b shows the evolution with cold drawing of the macroscopic parameters 
characteristic of the crack path (fracture profile) in the HAC tests. In the slightly drawn 
steels the behaviour is isotropic or quasi-isotropic and the macroscopic hydrogen-
assisted crack grows in mode I. The steels with an intermediate degree of cold drawing 
(2 and 3) exhibit a slight crack deflection associated with mixed mode propagation. In 
the most heavily drawn steels the crack deflection is more pronounced and the mixed 
mode takes place suddenly after the fatigue precrack, the deviation angle and the step 
height reaching their maximum values. 
 Fig. 5c shows the evolution with cold drawing of macroscopic parameters 
characteristic of the crack path (fracture profile) in the LAD tests. The behaviour is 
qualitatively similar to that of the HAC tests, i.e., isotropic or quasi-isotropic in the 
slightly drawn steels and increasingly anisotropic with cold drawing. The important 
difference is that the material is able to undergo mode I cracking in LAD conditions, 
even for the heavily drawn steels, although when the crack deflection appears the mode 
I propagation distance is a decreasing function of the degree of cold drawing (Fig. 5c). 
 Fig. 5 demonstrates that the progressive microstructural orientation (at the two levels 
of colonies and lamellae) clearly influences the angle and height of the fracture step 
(increasing with the degree of cold drawing in both HAC and LAD ) and the mode I 
distance in LAD (decreasing with it for heavily drawn steels). This change in crack 
propagation direction can be considered as the signal of the microstructurally-induced 
anisotropy of these materials: from a certain degree of cold drawing the cracks find 
propagation directions with lower fracture resistance. Thus the macroscopic crack paths 
in the steels —indicating a progressively anisotropic behaviour with cold drawing— are 
a consequence of the microstructural evolution towards an oriented arrangement. 
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Figure 5. Relationship between the microstructure of the steels and the crack paths: (a) 
evolution with cold drawing of the orientation angles of colonies and lamellae in the 
pearlitic microstructure; (b) evolution with cold drawing of the macroscopic crack angle 
and step height in HAC conditions; (c) evolution with cold drawing of the macroscopic 
crack angle, step height and mode I propagation distance in LAD conditions; the angles 

 , ' and  are measured from the radial direction (transverse to the wire axis). 
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CONCLUSIONS 

 

The strong plastic deformations produced during manufacture affect the steel 
microstructure which becomes progressively oriented in the wire axis direction as a 
direct consequence of cold drawing. This happens at the two basic microstructural 
levels: the pearlite colony and the pearlitic lamellae. The material possesses thus a 
composite microstructure. 
 The afore-said microstructural orientation influences the microscopic and 
macroscopic aspects of the fracture mode in aggressive environments, showing a 
general evolution from crack propagation in mode I for slightly drawn steels to mixed 
mode propagation (with strong mode II component) for heavily drawn steels. 
 In the two EAC regimes (HAC and LAD) there is a strong correlation between the 
microstructural orientation angles (at the two levels of the pearlitic colonies and 
lamellae) and the macroscopic crack deflection angles (representing the macroscopic 
crack paths), which clearly demonstrates the influence of the oriented microstructure —
and thus of the manufacture process by increasing cold drawing— on the macroscopic 
EAC behaviour of the steel wires. 
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