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ABSTRACT. The paper presents results of numerical modelling of elastic-plastic stress 
and strain fields at the tip of a propagating crack under cyclic loading. A particular 
motivation is to investigate the difference in fatigue crack growth rates previously 
observed in tests on M(T) and C(T) specimens made of 25CrMo4 (EA4T) steel. The 
stress field triaxiality (constraint) is considered as a factor influencing the deformation 
and, accordingly, closure behaviour at the crack tip. Among numerical issues studied in 
the paper are the strain hardening behaviour, consideration of the crack face contact, 
definition of the onset of crack opening, possible simplifications of numerical modelling 
by using the boundary layer formulation. The numerical results suggest that, using the 
effective stress intensity factor range, a reasonable explanation to the experimental 
findings can be provided. 
 
 
INTRODUCTION 
 
Plasticity induced crack closure is widely acknowledged as a phenomenon affecting 
fatigue crack behaviour in metallic materials [1]. Especially in the near threshold regime 
as well as under variable amplitude loading, the crack closure can considerably 
influence crack propagation rates. Depending on the material strain hardening, crack 
and component geometry, the level and sequence of applied loading, crack acceleration 
or retardation effects may become significant, and an additional effort is then required 
to transfer fatigue crack growth properties from standard test specimens to describe the 
component behaviour. 

To account for the plasticity induced crack closure, several analytical models have 
been derived and implemented in computer codes, see e.g. [2-5]. Most of them are 
based on approximate estimates of the plastic zone size ahead of the crack tip. As this is 
dependent, among other factors, on the triaxiality of the stress state (crack tip 
constraint), fatigue crack growth behaviour is affected by the geometry of a cracked 
specimen or component, respectively, as well as by loading conditions. In principal, this 
matter can be taken into account in existing models [2,5,6] by applying appropriate, 
geometry dependent solutions for stress intensity factors and related constraint 
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parameters, though certain model calibration is necessary [6]. Another approach is 
based on a numerical simulation of elastic-plastic crack tip fields under relevant loading 
conditions [7-10]. Despite of the complexity and costs associated with detailed 
numerical analyses, this way allows for essential deformation phenomena to be 
explored and included in simplified engineering models. 

This study is motivated by some experimental results previously derived in [11-12]. 
These include fatigue crack growth measurements on various specimen geometries 
made of 25CrMo4 (EA4T) steel widely used in the manufacturing of railway axles. In 
particular, a considerable difference in fatigue crack growth rates was observed for 
standard specimens of types M(T) and C(T). Further verification tests performed on 
round bars with semi-elliptical cracks, considered to be representative of the crack 
propagation in component like specimens, revealed additional uncertainties regarding 
the transferability of material data to the component assessment. 

To explore the possibility of an analytical description of those effects, a numerical 
analysis is applied below to simulate crack growth behaviour for the M(T) and C(T) 
specimen geometries with a special attention given to model plasticity induced crack 
closure. In particular, the analysis results suggest an adequate description of the crack 
growth rates for different specimens taking account of the crack closure. Various 
definitions of the crack opening stress intensity factor are discussed and applied to 
derive a correlation between the experimentally measured crack growth rates and 
calculated effective stress intensity ranges. Furthermore, two different approaches to 
simulate the crack growth behaviour – via modelling the entire specimens and by 
applying the boundary layer formulation – are considered and the respective results are 
discussed. 
 
 
REVIEW OF FATIGUE CRACK GROWTH DATA FOR EA4T 
 
Fatigue crack growth rates for the EA4T steel were experimentally derived in [11,12] at 
two stress ratios R = -1 and 0.1, thus covering a large part of the R range typical for 
loading conditions in railway axles. Mainly M(T) specimens with the cross-section 
10×24 mm² were employed in [11,12], as these allow for fatigue crack growth 
measurements both in tensile and compressive load regimes. While the value R = -1 is 
representative for the cylindrical shaft subjected to rotary bending, stress ratios up to 
some 0.5 may arise when assessing the crack propagation at locations near press 
fittings, where the cyclic bending stress is superimposed with residual stresses due to 
press fitting. Note that the stress ratio in the latter case may vary within a rather broad 
range, depending on the stress amplitudes in the associated load spectrum. 

Figure 1 shows experimental data from [12] related to the stress ration R = 0.1. 
Besides M(T), a C(T)-25 standard specimen geometry was investigated. Additionally, 
three specimens containing semi-elliptical surface cracks – two round bars with the 
diameter of 50 mm (BP1, BP2) and a flat plate with the cross-section 30×140 mm² 
(BP3), all subjected to plane bending with R = 0.1, were used in verification tests. As 
the M(T) and C(T) results show certain scatter, the related data points are approximated 
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by the NASGRO type equation [4], plotted as two curves in Fig. 1. The crack growth 
rates in the round bars were evaluated for the depth direction of the semi-elliptical 
crack, the results for the flat plate are given for both the depth and the length directions. 
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Figure 1. Fatigue crack growth rates for EA4T material measured on different 

specimens. 
 
Apparently, there is a considerable discrepancy between the mean curves for 

different specimens. Both the data scatter and difference between the mean curves 
increase with approaching the fatigue threshold region. Though the M(T) curves seem 
to provide a conservative description for the propagation behaviour of surface cracks, 
further investigations are useful to explore the geometry effects and include these in 
analytical crack growth models. 
 
 
NUMERICAL APPROACH 
 
The numerical study performed in this paper is focused on the different crack growth 
behaviour for M(T) and C(T) specimens. To minimize the analysis extent and obtain 
possibly realistic predictions of the evolution of crack tip fields at cyclic loading, the 
middle range of the fatigue crack growth curve is investigated. In doing so, the 
numerical calculations are performed assuming the crack propagation rate of 3.3×10-5 
mm/cycle, at cyclic loading with R = 0.1 and the stress intensity factor ranges of  about 
ΔK = 18 MPa√m for the M(T) specimen and 21.6 MPa√m for the C(T) specimen, as 
indicated in Fig. 1. 

The finite-element (FE) models employed in this study are shown in Fig. 2. These 
represent both the whole specimen geometries (half-specimen for the M(T) 
configuration) and their approximation by a boundary layer model (BLM). In the BLM 
formulation, the boundary conditions are prescribed via nodal tractions applied to the 
model boundary based on the stress intensity factor and the T-stress values for the 
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respective specimen configuration. In all cases, the contact between the opposite crack 
faces is considered. Furthermore, plane strain conditions are assumed. 
 

 
 

(a) (b) (c) (d) 

Figure 2. Finite-element models: a) M(T) specimen, half-model; b) C(T) specimen; 
c) boundary layer model; d) details of the crack tip region. 

 
The same topology of the crack tip region is used in all models (Fig. 2d). The crack 

originates at an initial notch with the tip radius of 3 µm and propagates along the 
symmetry plane. The total crack extension modelled in the analyses is 0.2 mm. The 
corresponding fine mesh region consists of 100 equally spaced elements with the 
element length of 2 µm. The crack extension is simulated by a consecutive release of 
nodes in the ligament that belong to the upper and lower halves of the model and are 
initially connected via multi-point constraints. To achieve the crack growth rate of 
3.3×10-5 mm/cycle, the node release at the current crack tip is performed after applying 
60 load cycles. 

The numerical calculations were carried out using the ABAQUS FE code [13]. The 
combined kinematic and isotropic cyclic strain hardening model implemented in [13] 
was employed. The corresponding cyclic stress versus strain curve is shown in Fig. 3 
together with experimental data reported in [14]. 
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Figure 3. Cyclic stress-strain curve for EA4T: experimental data [16] and their 

analytical approximation (curve). 
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RESULTS 
 
Full Model versus BLM 
The BLM formulation is a promising approach that can be applied to various cracked 
geometries, including surface cracks, to minimize the computational effort, see e.g. [7]. 
Figure 4 compares the stress and strain components, σ22 and ε22, acting normal to the 
crack propagation direction in the ligament, for the initial stationary crack subjected to 
monotonic loading with Kmax = 20 and 24 MPa√m for the M(T) and C(T) specimens, 
respectively. Except for slightly different strain distributions near the crack tip in the 
M(T) specimen, the agreement between the solutions for the full models and BLM is 
fairly good.  
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Figure 4. Stress and strain distributions ahead of a stationary crack tip in M(T) and 

C(T) specimens, monotonic loading. 
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Figure 5. Stress and strain distributions ahead of a growing crack tip in M(T) 

specimen, cyclic loading. 
 

However, the above conclusion does not hold for a crack propagating under cyclic 
loading. For the M(T) specimen, Fig. 5 demonstrates increasing deviation between the 
full specimen and BLM solutions with increasing number of cycles. Possible 
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explanations for this behaviour are the effect of higher order non-singular elastic terms 
on the plastic deformation at the crack tip, as well as cyclic strain hardening. 

Therefore, caution is advised when applying the BLM formulation to problems 
where high load cycles and propagating cracks are to be considered. For this reason, 
further calculations in this paper are based on the use of full specimen models. 
 
Crack Opening at Cyclic Loading 
Figure 6 presents crack opening profiles for the M(T) and C(T) specimens for an 
intermediate crack length, at different levels of applied loading scaled with respect to 
the maximum load in the cycle. Accordingly, the two geometries reveal rather different 
crack opening behaviour. Both cracks remain closed for at least 50% of the load cycle. 
At 65% of the maximum load the crack in the M(T) specimen is completely, while that 
in the C(T) specimen partly open: namely, some portion of the crack faces for the C(T) 
still remains in contact, thus reducing the effective crack driving force. 
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Figure 6. Crack opening profiles for M(T) (left) and C(T) (right) specimens. 

 
A more detailed comparison of the both specimen geometries is given in Fig. 7 that 

shows the crack tip opening displacement (CTOD), i.e. the displacement for the node 
next to the crack tip. These results allow for an approximate evaluation of the effective 
stress intensity factor range. The latter is normally defined as  

opeff KKK −=Δ max  
from the linear-elastic stress intensity factors at maximum loading and at the onset of 
crack opening. Based on the curves in Fig. 7, the crack tip opening for the M(T) and 
C(T) specimens is achieved at some 55% and 62% of the maximum load, or at Kop = 11 
and 14.9 MPa√m, respectively. This yields ΔKeff = 9 MPa√m for the M(T) specimen and 
ΔKeff = 9.1 MPa√m for the C(T) specimen, thus suggesting nearly equal crack growth 
rates for both crack geometries. 

The above result is also consistent with the assumption that the crack growth rate is 
governed by the CTOD range. According to Fig. 7, the latter constitutes similar values 
of 0.117 mm and 0.132 mm for the M(T) and C(T) specimens, respectively. 
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Figure 7. CTOD versus the fraction of 
maximum load in a cycle. 

Figure 8. Contact stress along the crack 
face at minimum load in a cycle. 

 
 

Crack Contact Stresses 
Instead of evaluating the crack opening load based on nodal displacements, a contact 
stress method is utilized in [9]. Accordingly, the applied range ΔK is reduced by a value 
that is necessary to compensate the negative stress intensity factor due to the contact 
stresses. Potential limitations of such an approach result from the assumed linear-elastic 
superposition of the stress intensity factors due to external and contact loads, as this is 
strictly not applicable in the presence of the contact interaction and crack tip plasticity. 
Moreover, an accurate calculation of crack contact forces may become rather 
problematic. Nevertheless, the approach [9] is employed below for comparison 
purposes. 

Figure 8 shows computed contact stresses along the crack faces in M(T) and C(T) 
specimens upon a crack extension of 0.06 mm (30 elements) from the initial notch, at 
the minimum load level. Due to a final radius of the initial notch root, the notch surfaces 
remain free of contact interaction. Certain numerical inaccuracies can be mentioned at 
the early stage of crack growth in the M(T) specimen, resulting is the oscillating contact 
stresses. Using the computed contact stresses along with the weight functions for the 
considered specimen geometries [15], the stress intensity factors required to compensate 
the crack contact forces are found to be 8.8 MPa√m for the M(T) and 11.8 MPa√m for 
the C(T) specimens. Then the effective stress intensity factor ranges become ΔKeff = 9.2 
MPa√m and ΔKeff = 9.8 MPa√m, respectively. Though these are somewhat higher than 
the corresponding values estimated from the crack opening profiles, the contact stress 
approach seems to yield consistent results. 
 
 
CONCLUSIONS 
Elastic-plastic analyses of crack tip fields performed in this study give a reasonable 
explanation for the difference in fatigue crack growth rates observed in tests on the 
EA4T steel using M(T) and C(T) specimens. In particular, the results suggest that the 
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effective stress intensity factor range concept provides a proper measure of the crack 
driving force for specimens with different crack tip constraints. Though somewhat 
different values of ΔKeff are derived based on the crack opening displacement and the 
crack contact stress methods, both results series are consistent yielding close ΔKeff 
values for the M(T) and C(T) geometries at equal crack growth rates. 

Reservations should be made due to two-dimensional FE models adopted in this 
study, so that further analysis effort is required to explore specific effects for surface 
cracks. In this context the boundary layer model seems to have a limited applicability 
with respect to its ability of describing fatigue crack propagation in elastic-plastic 
materials. 
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