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ABSTRACT. 
The models of crack growth in mixed mode conditions are reviewed for the plane(2D) 

and three-dimensional (3D) states of stress. Both critical load value and crack path or 

surface growth are predicted by different criteria in terms of elastic singular stress 

states and T-stress component. Both monotonic and cyclic loading are considered. The 

concepts of smooth and rough crack surface are discussed with application to 3D crack 

surface growth. 

 

 

INTRODUCTION 
 

The prediction of crack growth path under imposed loading and of its rate of growth 

constitutes most important problem in fracture mechanics. The present paper will apply 

LEFM to predict crack growth but the effects of plasticity and damage will be 

accounted for by postulating the relevant fracture criteria. The crack growth can be 

simulated as a succession of straight segment in plane cases or linear surface elements 

in 3-D cases. The effects of crack curvature can also be incorporated in the analysis.  

 

TWO-DIMENSIONAL (2D) MIXED MODE FRACTURE CRITERIA 

 

The fracture criteria should be based upon physical models accounting for damage 

processes of the material in front of the crack tip. However, since the exact description 

of these processes is difficult, the problems are usually treated within the framework of 

LEFM by using representative values such as stress components or specific strain 

energy specified at some finite distance from the crack or sharp notch tip. This 

characteristic distance specifying the core region affected by damage and plastic 

deformation is an unknown parameter to be specified experimentally or analytically.  

The first fracture criteria related to the angled crack problem and the orientation 

of crack growth used the simplest assumption of the core region bounded by a circle of 

radius Cr from the crack tip. The criteria such as: maximum circumferential tensile stress 

(MTS) [1], minimum strain energy density (SED) [2], maximum energy release rate [3, 

4] (MERR) and local symmetry [5] (LS), crack extension force criterion (CEF) [6], 

maximum tangential strain criterion (MTSN) [7], maximal stress triaxiality criterion 

(Mt-criterion) [8] became popular and were analyzed in the literature.  
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However, there exists the possibility to improve accuracy of the proposed 

fracture criteria by including the T-stress effect into the criterion. By adding the non-

singular terms to singular stress, the value of r specifying the core region becomes 

essential. There have been numerous studies of extended fracture criteria accounting for 

T-stress, starting from the analysis of Wiliams and Ewing [9] related to MTS-criterion. 

The subsequent papers [10,11,12,13,14] demonstrated that the crack growth orientation 

depends on the radius r and better agreement with experiment can be attained by 

assuming the value of rC to depend on the orientation angle  . 

A simple extension can be obtained by assuming the process zone to coincide 

with the localized plastic zone at the crack tip. This idea was applied in T-criterion [15], 

modifying the earlier SED-criterion. The specific stress and strain energy T is split into 

distortional DT and hydrostatic portions VT . Assuming the distortional energy to 

correspond to plastic flow and the hydrostatic stress energy to decohesion and fracture, 

the T-criterion postulates that the crack propagates along the direction corresponding to 

a maximum of total specific stress energy on the perimeter of varying radius )(C rr   

specified by the condition of constant distortional energy at the yield point. This 

criterion is formulated for the varying core region radius. In the case of brittle materials 

it tends to the SED criterion as the size of plastic zone is very small and its shape can be 

assumed as circular. W-criterion [16] proposed that the crack growth angle is specified 

by the minimum value of W-factor defined as arW p /)(  where )(pr  is radius of 

plastic zone and a is the half crack length. The Huber-Mises yield condition has been 

applied. The W-criterion is based on an assumption of the minimum energy consumed 

during the fracture process in the plastic zone. Yan et al.[17] specified the plastic core 

region by applying a more general yield condition which for the special case is 

equivalent to the Huber-Mises yield condition. 

However, in the vicinity of the crack tip we may distinguish the zone 

characterized by growth of microcracks induced by tensile microstress [18]. This 

damage is related to the hydrostatic stress energy density VT . Basing on this assumption 

Mróz [19] proposed the MK-fracture criterion postulating that size of damage zone is 

specified by the condition 
C

VV TT   and macrocrack propagation follows the direction 

of smallest plastic dissipation, that is corresponds to a minimum value of the 

distortional stress energy DT  specified along the perimeter const),( C

VV  TrT  , thus 
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and 0*   for plane stress,  *  for plane strain cases. Assume now, that the critical 

state is reached on the radius constC r . Assume that for a mixed mode loading the 

critical value of Cr  is specified by the relation 

CIICIC sincos rrr       (3) 

where  

ICI

IICII

/

/
tan

KK

KK
      (4) 

is a measure of mode mixity. Let us note that CIC rr   for mode I ( 0sin   and 1cos  ) 

and CIIC rr   for mode II ( 0cos   and 1sin  ). The crack propagation criterion is now 

stated in the form 
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THREE-DIMENSIONAL (3D) CRACKS AND FRACTURE CRITERIA. 

 

Though there are numerous fracture criteria proposed for 2D stress states under I/II 

mixed mode conditions, only several 3D fracture criteria have been proposed and the 

related experimental work is limited. The first approach is based on the assumption that 

a new increment of fracture surface developing at the crack front is specified by locus of 

critical points and linear segments connecting these points to the crack front. The 

smooth crack surface is then generated. The other approach is based on the critical plane 

concept by specifying orientation of the critical plane element of a new fracture surface 

near the crack front. The critical plane approach allows for the rough crack surface 

evolution. 

 

Crack growth modes. 

Any growth of the plane crack surface which is located through the thickness of a plate, 

can obtained by superposition of three basic modes, Fig. 1. Two fundamental concepts 

can now be assumed: 1) the new crack growing surface is smooth and continuous at the 

edge of existing pre-crack, 2) the new crack surface is composed of facets of modes I, II 

and III oriented according to local critical state conditions. The crack surface is 

composed of the pattern of facets and its evolution is governed by geometric and 

mechanical characteristic of the element. 

We shall refer to the first case as smooth crack surface models (Fig. 2) and to the 

second as rough crack surface models (Fig. 3). 
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Fig. 1. Modes of plane crack edge growth. 

 

 To discuss these two approaches, consider the 3D square plane crack, within the 

3D element. It can be expected that new crack surface may grow from each edge. 

However, satisfying the continuity conditions the new crack surface may evolve in 

mode I or II or in combined mode I+II. But the mode III loading and the associated 

crack facets generated locally by the KImax condition violate the continuity at the 

existing crack edge. Thus the mode III loading may induce the rough crack surface 

combined with facets developed in mode II, Fig. 3. In fact, brittle materials exhibit 

rough crack surface in mode III composed of facets of different modes, cf. [20, 21]. In 

ductile materials the shear band evolution may affect the crack roughness due localized 

plastic deformation and damage growth. In fact Dyskin and Salganik [22] analyzed 3D 

cracks in compression and showed that 3D crack growth can result in a more 

complicated growth mechanism than 2D. They investigated possible mechanism of 

wing crack growth induced also by rough crack surface and associated dilatancy effect 

[23].  

 
Fig. 2. Pure modes of smooth crack tip deformation. 

 
Fig. 3. Pure modes of rough 3D crack tip deformation. 

 

I mode II mode III mode 

Microcracks 

for brittle 

material [20] 

I mode III mode II mode 

I mode II mode III mode 

)(pr s  
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A more general case of the 3D crack is the elliptic crack, which was analyzed in 

uniaxial compression tests by Adams and Sines [24] on PMMA samples. They showed 

that crack growth generally occurs in wing mode, but in addition at the lateral parts of 

crack edge a number of microcracks are developed. This can be interpreted as the mode 

III microcracks in brittle materials, cf. Figure 4. The extensively investigated 3D 

elliptical cracks embedded in brittle material under compression loading have also been 

analyzed by Dyskin et al [25,26]. 

 

 
 

Fig. 4. 3D elliptic crack growth in compression. 

 

Rough (dilatant) crack models 

The effect of crack surface contact and asperity interaction is essential for modes 

II and III loading. In fact, the growth of precrack generated in mode I and next subjected 

to shear is associated with evolution of roughness pattern due to process of 

microcracking and associated inclined facets in mode I with subsequent connecting 

microcracks, cf. Pook [27]. The interface sliding along formed asperities induced mode 

I stress and crack dilatancy. Crack tip shielding then occurs due to frictional resistance 

to sliding and asperity interaction. The cases of closed or partially closed cracks 

subjected to shear and exhibiting contact shielding are numerous and occur, for 

instance, in compression or shear induced fracture of rocks or ceramic materials, rolling 

contact induced sub-surface fatigue cracks, mixed mode fatigue crack growth, etc. The 

referenced papers [21,28-35] contain both analytical and experimental studies of 

asperity interaction modes, specification of the effective SIFs and prediction of crack 

growth rates. The assumption of the contact interface interaction at the crack front or at 

the whole cracked interface provides different modelling effects. The detailed review of 

literature is not presented here. A simplified model of a closed crack interface will only 

be discussed in the following.  

Consider a crack surface in a form of wedge shaped asperities, inclined at the 

angle )2/,0(  z
 to the nominal crack plane, Fig. 5.  

b 
a 

a > b 

Mode II 

Mode II 

Mode III 
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Fig. 5. Crack with wedge – shaped asperities and microstresses acting on asperities facet 

  and stress acting on the nominal crack plane segment 0 . 

 

Denote the local stresses acting on wedge flanks   by 
 n  and 

 n , so that the local 

friction condition on   is 

  nnn tan     (6) 

where   is the local friction coefficient and   is the friction angle. The stress 
z
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z

n  acting on the nominal crack segment are expressed from the equilibrium equations 

for a single asperity, thus 
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where 1s  denotes the wedge flank length and 2s  is the asperity length within the plane 

0 . The conditions on the nominal plane 0  can be expressed as follows 
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These conditions can be expressed in terms of the asymptotic fields with neglect of T-

stress. Denoting by dd KK III ,  the effective SIFs for the dilatation crack model and by 

III , KK  the SIFs resulting from the stress on the wedge asperity flanks  , we obtain 
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Denote by III , KK  the SIFs for a smooth and plane crack. Applying the superposition 

principle for the external loading  ,  and the wedge asperity loading 
z

n

z

n  , , the 

effective SIFs are  

)).cos()sin((
sin

cos

)),cos()sin((
cos

sin

IIIIIIIII

IIIIII



























zz
z

d

zz
z

d

KKKKK

KKKKK

 (10) 

These relations are valid when the contact occurs on  , thus  

)cot()tan( IIII

zz KKK    .   (11) 

These inequalities specify the sliding domain B, Fig. 6. When )cot(III

zKK  , the 

crack opening occurs, and the 
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 domain A in Fig. 6 is specified. When )tan(III

  zKK , there is no slip at the 

contact interface and contact locking occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Domain of crack loading for dilatant crack model: open model (A), slip and 

contact interface (B) and closed crack (C). 

 

Smooth crack models 
The stress analysis at the elliptical crack front was presented by Sih et al [36-38]. 

Firstly in [36,37] it was shown that the three dimensional stress state in a certain plane 

is identical to the two-dimensional case. However the stress intensity factor in general 

depends upon the curvature of the crack edge for three-dimensional problems. The same 

applies to the displacement field. In the subsequent paper Hartranft and Sih [39] 

provided the local singular 3D stress field at the crack front for small scale yielding. 

Using the singular stress components, Sih and Cha [40] extended the S-criterion to 3D 

by specifying the strain energy density near the crack front as follows 
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Similarly, as in the plane case, a minimum of the strain energy density factor S is 

searched on a sphere describing by ,,r  and centered at each point, s on the crack 

front [40, 41]. The crack growth occurs when S=Smin reaches critical value, SC, and the 

size of rC along a three-dimensional crack front is assumed to vary such that 

crmin )/()(/),( dVdWsrsS C   remains constant. The continuous formulation 
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The extension of stress triaxiality condition (Mt-criterion) to 3D cases was presented 

by Kong et al. [8]. Introducing the stress triaxiality parameter  
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The value of the ratio M is maximized with respect to the angle  , as it does not depend 

on  . The optimal orientation segments on the existing crack front then generate a new 

incremental crack surface and its size is specified by setting the critical value of 

ICI KK   or of the effective SIF measure.  

 In a similar way the MK-criterion can be extended to 3D problems in the 

following form 
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The results of applied MK-criterion to the 3D problem of growth of elliptical crack 

under tension loading condition are presented in Figure 7. The size of the crack wings is 

calculated using Eq. (15).  

 

 
Fig. 7. 3D elliptical smooth crack growth based on the MK-criterion. 

 

Critical plane criteria 

Let us now present an alternative formulation of crack growth criteria based on the 

concept of critical plane. Such criteria are expressed in terms of traction or strain 
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components on the materials plane element. The unit vector n  specifies the orientation 

of plane. A general critical plane condition can be formulated as follows 

0),,,(max
*

C  ffF nnnn 
n

    (16) 

where *

Cf  represents the critical value reached by the failure condition generally 

depending on both stress and strain components associated with the respective planes. 

The comprehensive review was recently presented by Karolczuk and Macha [42]. 

In this section, the local critical plane models will be extended by introducing 

non-local failure criteria applicable to both regular and singular stress regimes and also 

for monotonic and cyclic loading cases. 

Consider an arbitrary physical plane   and the local coordinate system 

),,( 321  , Fig. 8. In the global coordinate system ),,( 321 xxx  the origin of the local 

system is specified by the position vector ),,( 0302010 xxxx and the unit normal vector 

),,( 321 nnnn specifies the plane orientation, where ),cos( 3 ii xn  . 

 
Fig. 8. The 3D system in R-criterion. 

 

The resulting shear stress and strain in the plane   are expressed as follows: 
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where cc  , denote the failure stress of material in tension and shear. For large stress 

gradients or singular stress regimes such as those occurring at vertices of wedge shaped 

notches, the non-local stress failure conditions is applied by averaging the failure stress 

function over an area 00 dd  , thus 
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The size parameter 0d  representing the size of damage zone can be specified by 

requiring the non-local conditions (18) to be equivalent to the Griffith condition in the 

case of tensile crack propagation. This provides 
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where IcK is the critical stress intensity factor in Mode I. The extensive application of 

the non-local failure criterion to monotonically loaded elements witch sharp notches and 

cracks was discussed by Seweryn and Mróz [43,44]. The application to fatigue crack 

initiation and growth was discussed in [45,46] by applying the non-local criterion with 

account for local damage growth.  

 

The Fatigue Crack Growth. 

The history of rate of crack growth modelling starts from the Paris law [47,48] The 

equation predicts the fatigue crack growth in one cycle for the case of small scale 

yielding in terms of the amplitude K  in mode I. In actuality, the rate of crack growth 

depends on many factors, such as mean and maximal stress, crack closure effect, mode 

mixity, etc. There have been numerous extensions of Paris equation to account for other 

effects. Tanaka [49] introduced the concept of the effective stress intensity factor 

effK for mixed mode conditions. Another form of the effK  resulting from the MTS-

criterion was proposed by Yan et al. [50] based on the MTS-criterion. There are also 

other parameters used to correlate fatigue crack growth under mixed mode loading. Sih 

and Barthelemy [51] used the strain energy density factors S  replacing K in the 

Paris type equation. They compared the predicted crack path using the S parameter with 

experimental data [52] for specimen made of Ti-6Al-4V with inclined cracks cf. Table 

1.  

Table 1. 

Initial crack length 0a [mm] Specimen A: mm][11.70 a  Specimen B: mm][73.60 a  

][  30  43  

min MPa][  69.20  24.17  

max MPa][  85.206  38.172  

However, these predictions are unsatisfactory, especially for 30 . The other 

parameter used frequently to predict the crack growth rate, the crack tip opening 

displacement [53-55], also. The application of MK-fracture criterion to the case of 

cyclic loading was presented in [19]. This criterion predicts the crack growth orientation 

depending on the load level. For the stress cycle with stress level varying between min  

and max , the crack growth initiation stress pr  was introduced and assumption that 

oppr   , where op  is the crack opening stress associated with crack closure effect 

254

Carpinteri
Casella di testo



 11 

[56]. Then it is assumed that minpr   if opmin   . The following relation specifying 

the crack growth per one cycle was proposed in [19]: 

n

VD TrTC
N

a
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d const.     (20) 

where r is length of decohesion zone along the crack growth direction and C, n are the 

fatigue parameters obtained from uniaxial tests ( 90 ). In the case Ti-6Al-4V alloys 

the fatigue parameters are: 3.5 and 1.712. The comparison of model predictions and 

experimental results are shown in Tables 2 and 3. The comparison with predictions of 

R-criterion is also presented in tables in the following form 
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
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  (21) 

where 11,nC  are the fatigue constants for the uniaxial test ( 90 ). In the case Ti-6Al-

4V alloys the parameters are 141026,1  and 5.4 respectively [57]. In the uniaxial test 

equation (21) is equivalent to Paris equation. 

 
RIGTH TIP. (Eq. 21) RIGHT AND LEFT TIP. (Eq. 20) RIGHT TIP (Experimental results from [52]) 

a  N  
da/dN 

a  N  
da/dN 

a  N  
da/dN 

[10-3m] cykle [10a-7m] [10-3m] cykle [10-7m] [10-3m] cykle [10-7m] 

0,945 3583 2,64 0,945 1390 6,77 0,91 1390 6,54 

1,705 5416 4,15 1,705 2430 6,25 1,70 2430 7,59 

…         

4,58 8695 13,83 4,58 5 400 12,14 4,55 5 400 12 

…         

6,86 9813 24,89 6,86 7 000 18,38 6,86 7 000 18 

Table 2. Mixed mode fatigue crack growth in titanium alloys for specimen A. 

 

RIGTH TIP. (Eq. 21) RIGHT AND LEFT TIP. (Eq. 20) RIGHT TIP (Experimental results from [52]) 

a  N  
da/dN a N da/dN a N da/dN 

[10-3m] cykle [10-7m] [10-3m] cykle [10-7m] [10-3m] cykle [10-7m] 

0,86 3546 1,64 0,86 2 954 2,91 0,30 4 660 1,85 

…         

3,575 12862 4,19 3,575 9 804 4,91 3,00 11 490 5,77 

…         

4,435 14462 5,72 4,435 11 268 6,15 3,87 13 000 3,91 

…         

6,9 17436 10,36 6,9 14 319 9,54 6,33 15960  10,92 

Table 3. Mixed mode fatigue crack growth in titanium alloys for specimen B. 
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CONCLUSIONS. 

The present review paper presents synthetically different criteria of crack growth for 2D 

and 3D cases. The criteria are based on the elastic singular stress distribution and T-

stress component. The energy concepts and critical plane approaches are discussed and 

their predictions compared for several specific cases. In the case of modes II and III 

loading the concepts of critical crack surface is introduced with account for frictional 

slip and dilatancy effects. For 3D cracks, both smooth and rough crack surfaces can be 

generated at different point location at the crack front. 
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