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ABSTRACT. Thin layers are commonly used in a wide kind of industrial products 
(from everyday packaging to airplanes) and are also frequently found in biological 
systems. The mechanics of thin sheets is rich and complex, with strong geometrical non-
linearities leading for example to the intricate folds and singularities that we can 
observe in a crumpled sheet of paper. But here we show that the fracture path in thin 
sheets can follow remarkably regular geometrical path. We have observed crack path 
that evolved from an initial notch a few millimeter wide into a logarithmic spiral crack 
path that reached a meter in diameter. We present a model that explains the impressive 
regularity of this crack path.  
 
 
INTRODUCTION 
 
Thin sheets and slender bodies are ubiquitous in industrial applications, which often try 
to reduce material weight. The study of their strength and rupture mechanism is 
therefore very important, and involves the coupling of out-of- plane bending (strong 
geometrical non-linearities) with crack propagation. Ductile materials are often chosen 
when thin plates constitute part of the mechanical strength of the structure. The rupture 
of such plates by a blunt tool studied in the case of ship grounding leads to interesting 
diverging crack path morphologies (concertina tears) [1]. 

Here we focus on the case of brittle materials, which are commonly used for 
packaging, since the opening process has to be easy. Using such material, we show that 
when a blunt object is pushed against the same fracture lip, the crack propagates in a 
very robust and reproducible spiral path. Indeed the shape is independent of the object 
shape, speed, or precise movement, as long as it always pushes on the same lip. Others 
spiral fracture path have been observed in the very different context of drying-induced 
crack propagation [2–4]. We characterize the spiral and show how a model developed in 
[5] for the case of a rectilinear displacement of the blunt ob ject (leading to oscillatory 
crack path) explains this surprising behavior and predicts the spiral shape. 
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THE EXPERIMENT 
 
In our experiments, a brittle thin sheet (Bi-Oriented PolyproPylene, thickness t from 30 
to 90[µm]) is clamped at its edges and a small (5[mm]) straight incision is made far 
from its boundaries. A blunt object, our tool, is placed inside the incision perpendicular 
to the sheet. With this object, we start to push on one edge of the incision UT (see fig. 
1-a) and as the loading increases the crack eventually starts to propagate. We then 
displace the tool with the single following rule: the tool always pushes on the same lip 
(see fig.1-b). A curved path sketched progressively develops. In figure 1-c) is presented 
a picture of the final crack path obtained: a spiral that reached up to a meter in diameter 
in only about 2.5 turns. We stress the fact that in the experiment we do not specify the 
exact object displacement, as long it is continuously pushed against the same edge (see 
fig. 1a) and b). Despite this loose control procedure, the final spiral crack is 
impressively smooth and reproducible. What sets the final shape? 
 

 
    
 
 
 
 
 
MODEL 
 
We follow here the approach developed in the study of a oscillatory crack path made by 
a blunt object [5, 6]. Although it is based on classical fracture mechanics theory and thin 
sheet elasticity, it surprisingly gives geometrical rules for the prediction of the crack 
propagation. 

Elastic energy in thin sheet is dominated by in-plane stretching energy (scaling as the 
thickness t) since the bending elastic energy only scales as t3 and will not contribute to 
crack propagation. We then define a soft region as the convex hull of the crack path 
(white area in fig. 2). This area is allowed to bend out of plane without generating 

FIG. 1: Diagrams of the experiment in initial (a) and intermediate (b) stage. (c) Picture of the 
final spiral crack path (30µm thickness BOPP sheet). The edge is painted in black for contrast 
reasons, and a green line is superposed in order to present the path of the crack in the picture. (d) 
Zoom of the initial part of the spiral, the red line represents the initial notch. 
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stretching: when placed there, the tool will only produce out of plane deformation with 
negligible elastic energy. However if the tool moves out of this region, in-plane strain 
appears. For example in fig 2 the edge segment UT is being stretched by the tool being 
outside the white soft zone.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 

The elastic energy can then be estimated by  E ∝ E2At , where E  is Young’s 
modulus of the sheet,    is a typical strain, and A  is the area of the stretched zone 
(roughly the dark gray in fig. 2). The strain    is related with the change in the length of 
the segment UT and goes like    α

2  for  α 1  (see fig.2). Finally, the elastic energy 
reads   E  EtL

2α 5 , since A = L2α . If we push more, both the angle α  and the energy 
will increase, up to the point when it is more energetically favorable to propagate the 
crack tip T (Griffith criterion). Considering a crack advance by dl  in the direction given 
by the angle β  (see fig. 2) the soft zone advances, α  decreases by 
dα = cos2α(tanα cosβ − sinβ)dl / L . Propagation takes place if the elastic energy 
release rate   dE  EL

2tα 4dα  compensates the crack energy Γtdl , i.e. when α  reaches a 
critical value α c . A second equation comes from the maximum energy release rate 
criterion that specifies that the crack propagate in the direction defined by 
∂
∂β

dα
dl

= tanα +1 tanβ = 0 . Finally, propagation takes place when: 

 
α = α c ,   α c  Γ EL[ ]1 4                                                  (1) 

in direction β = α +
π
2

.                                                    (2) 

This set of equation is remarkable since it would predict crack propagation using 
only geometric quantities (the angles α , β ), although it is based on fracture mechanics. 
Since the elastic energies are localized (grey area in figure 1-a), the shape of boundary 
conditions plays no role. A second surprise is that equation (2) establishes that crack 
propagates in a well-defined direction β  with respect to the unstressed edge UT, 
independently of the shape or movement of the pushing tool. Indeed the changes in L 

FIG. 2: Geometry of the fracture process. The white zone in the right is free to bend out-of plane 
and does not contribute to stretching elastic energy in the system. 
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modify the critical angle α c  with such a low exponent that we consider the value α c  to 
be constant. This constant-angle condition explains the final spiral shape. 

To understand the crack path we can identify three stages of the cutting process, 
where the geometry of the soft-zone, are different. (i) In a first initial stage (fig. 3-a and 
b) the soft zone ends on a line containing a fixed point O. The crack tip T then 
propagates with a constant direction with respect to the radius OT. In polar coordinates 
centered in O, the radius r = r0e

− cot(β )θ . This is a logarithmic spiral with center O. (ii) 
After half a turn, the soft zone, changes morphology (fig. 3 -c) and the crack now 
propagates around another fixed point, the other end of the initial notch. The model thus 
predicts another logarithmic spiral, with the same pitch but another center. (iii) Finally 
after another half turn (see fig. 3 -d), the edge of the soft zone does not stop on fixed 
point, but constantly has a tangent contact with previous part of the curve. The crack 
path develops around itself in a complex way. 

 

 

EXPERIMENTAL RESULTS 
 
We now turn to experimental test of the predictions. The first two stages are predicted 
to be logarithmic spirals, but they don't span a large radius difference and the prediction 
is not easy to test. We focus on the last stage (which governs most of the spiral) and 
show that it leads to spiral is again scale-less, logarithmic spiral with a different pitch.  

The spiral shape was digitalized, and assuming a logarithmic shape, a center point 
was defined by the following procedure. If two points in the spiral have parallel 
tangents, then the center must be lie in the line that joins them. If we repeat this 
procedure again and find two another points, then the center is in the interception of the 
two lines. This procedure is sketched in figure 4-a). 

In the semi-log plot in fig. 4 we show the distance to the "center" as a function of the 
angle for all points of three different spirals. Two of them are initiated with a notch in 
the same direction in order to show reproducibility of the process, and the third one is 
initiated with a notch in a perpendicular direction. The crack path is highly reproducible 
as we can see from the two spirals initiated with the same conditions. 

FIG. 3: Different stages in the evolutions of the spiral. (a) and (b): First stage where the fracture 
is growing around a center point U. (c) Second stage defined by the path growing around another 
single point.  (d) Third stage defined by the path growing around a point that develops onto itself. 
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In all spirals, after a little more than one turn the distance grows exponentially with 
the angle: the spiral starts to behave as a logarithmic spiral. In fact it makes sense that 
the beginning of the plot is not an exponential, because these points are from the firsts 
stages of the spirals, which are describe from another center. Although the behavior is 
very close to a logarithmic spiral (linear plot in fig.4), we can observe some oscillations. 
To better understand this feature, we study the fracture direction at each point from the 
final in figure 5. 
 

 
 

From the model, one expects a value of β  larger than π 2  but the measurement 
show that the actual value fluctuates around π 2 . The values of β  have a π -periodicity 
with respect to the angle θ . We also note that the two spiral initiated in the same 

FIG. 4: logarithm of distance of points to the center as a function of angle for three different 
spirals (      and      : same experimental conditions;     : initial notch in a perpendicular direction).  
Inset:  geometrical construction used to find the center of the spirals. 

FIG. 5: Fracture angle β  measured on the three spirals path as a function of the orientation in the 
sheet. Same symbols as in figure 4. 
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direction are out of phase by π 2  with the other one. This is coherent with the condition 
used to initiate this third spiral, a notch in a perpendicular direction if we interpret the 
variations of β  as being anisotropy of the fracture properties of the material. As a 
result, the study of the shape of the spiral obtained very easily gives a measurement of 
the anisotropy in fracture properties. 
 
 
CONCLUSIONS 
 
In this paper we have presented a highly reproducible spiral crack path that we interpret 
using fracture theory arguments that showed that the propagation of cracks in brittle thin 
sheets could be predicted using geometry. 

In addition, a very interesting result from this work is that the regularity in the 
observed oscillation for the fracture angle allows us to test with a single experiment the 
anisotropy of the material. 
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