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ABSTRACT. Service life of cyclically loaded components is often determined by     
stage I-crack propagation, which is highly influenced by microstructural features such 
as grain boundaries. A 2D-model to simulate the growth of these short fatigue cracks is 
presented discretising the crack by displacement discontinuity boundary elements. They 
allow an opening and slide displacement of the crack flanks. The direct boundary ele-
ment method is used to mesh the grain boundaries which only carry out absolute dis-
placement. A superposition procedure allows to employ these different types of bound-
ary elements in one model. Being enclosed by elements, individual elastic properties of 
the grains can be considered. Stress intensity factors are determined to verify the elastic 
model. To simulate short crack propagation the plastic deformation in front of a crack 
tip is modelled as slip on individual slip planes. Displacement discontinuity boundary 
elements which only allow a slide displacement mesh the activated slip band. Its length 
is limited by the distance between crack tip and grain boundary. In the neighbouring 
grain, stress increases while the crack tip progresses to the grain boundary. If a critical 
shear stress intensity is reached on a potential slip plane of the adjacent grain, this 
plane is activated and the plastic zone overcomes the boundary. Varying elastic proper-
ties influence the direction of maximum shear stress and therefore the highest loaded 
slip plane which is activated can differ. Furthermore a change in crack tip slide dis-
placement determining stage I-crack propagation is observed. 
 
 
INTRODUCTION 
 
The material of structural components is often cyclically loaded close to its fatigue 
limit. Service life of such components is determined by the propagation of microstruc-
turally short fatigue cracks. Growth of these stage I-cracks occurs on single slip planes 
and strongly interacts with microstructural features such as grain boundaries. Therefore, 
the material cannot be treated as a continuum so that linear elastic fracture mechanics 
(LEFM) is not applicable to quantify the propagation behaviour of short cracks. 
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When the crack tip approaches a grain boundary, its propagation rate decreases and 
when overcoming the boundary, crack progress accelerates significantly resulting in an 
oscillating crack growth rate. Navarro and de los Rios [1] proposed an analytical yield 
strip model to describe this behaviour: Plastic slip ahead of the crack tip is blocked by 
the grain boundary. When a critical stress intensity on a dislocation source in the adja-
cent grain is exceeded, a slip band is activated and the plastic zone overcomes the grain 
boundary. This one-dimensional analytical crack growth model is extended in [2, 3] to 
take arbitrary two-dimensional grain geometries and crystallographic misorientations 
into account. Plastic anisotropy of the grains is considered as plastic slip only occurs on 
crystallographic slip planes. The model is solved numerically using dislocation discon-
tinuity boundary elements to discretise the crack which lies in an infinite, homogeneous 
plate. Individual elastic properties of the grains are not taken into account. 

In order to consider these properties each grain has to be enclosed by boundary ele-
ments. In contrast to the crack flanks performing relative displacements, the grains are 
firmly connected resulting in an absolute displacement of their boundaries. Satisfying 
these conditions, crack and grain boundaries need to be meshed by different types of 
elements. A superposition method is introduced allowing their use in one model. 
 
 
SHORT CRACK MODEL 
 
To employ two different types of boundary elements in one model, the problem of a 
crack in one grain is divided into two sub-problems [4] (Fig. 1). One sub-problem is the 
crack in an infinite plate (a), which is discretised by displacement discontinuity bound-
ary elements. They are discussed in the following section and allow relative displace-
ments of the crack flanks. The second sub-problem is the crack-free grain (b), whose 
boundaries are meshed using the direct boundary element method. 
 

 
 

Figure 1. Superposition of a crack in an infinite plate and a crack free grain. 
 
Displacement Discontinuity Boundary Elements 
The model presented in this paper considers the crack on a single slip plane and allows 
a plastic deformation by slip on this plane. Crack and slip plane are assumed to be in an 
infinite plate and discretised by displacement discontinuity boundary elements allowing 
an opening and slide displacement of the crack flanks as well as sliding in the activated 
slip band. bc represents the relative displacements, which are constant within one crack 
element. tc is the stress acting on opposite faces of the crack surface. The relation     
between bc and tc is determined analytically [5] and stored in the influence matrix C. 
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tc = C · bc (1)
 
Relative displacement of the crack surfaces causes a stress and displacement field in the 
infinite plate. The influences D and F from bc on the stress pc and the absolute dis-
placement uc along the imaginary grain boundaries are also obtained analytically [5]. 
 

pc = D · bc,            uc = F · bc (2), (3)
 

Dislocation discontinuity boundary elements allow an efficient modelling of cracks 
and activated slip bands but they are inappropriate to mesh grain boundaries. Enclosing 
the grains by boundary elements in order to consider the individual elastic properties of 
the grains, a different boundary element method is used and discussed as follows. 
 
Direct Boundary Element Method 
The grains of a microstructure are firmly connected. In the presented model, this is en-
sured by using direct boundary element method to discretise the grain boundaries. The 
elements only allow an absolute displacement; no opening or sliding. For an enclosed 
domain, stress pb and displacement ub on the boundary are linked by the influence ma-
trices G and H [6]: 
 

H · ub = G · pb (4)
 
Stress along the imaginary crack line inside the enclosed domain is only a function of 
stresses and displacements on the boundary (Eq. 5). 
 

tb = A · ub + B · pb (5)
 
A and B are influence matrices. 

Both sub-problems, the crack in the infinite plate and the crack-free grain, can be 
solved using the previous equations. Now the two methods are coupled in order to solve 
the total problem. 

 
Superposition Procedure 
In order to couple the boundary element methods discussed above a superposition pro-
cedure is used: Stress t along the crack as well as stress p and absolute displacement u 
on the grain boundaries of the total problem is the sum of the stresses and displacements 
of the two sub-problems [4]. 
 

t = tb + tc,            p = pb + pc,            u = ub + uc (6)
 
With the use of these compatibility conditions, Eqs. 1 to 5 are combined yielding Eq. 7 
which contains the identity matrix I and the null matrix 0. 
 

811



−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

H GD HF u G 0 p
A C AF BD b B I t

 (7)

 
This system of equations can be uniquely solved, if the boundary conditions are known. 
For an open crack, stress normal to its flanks is zero. Being closed, the crack flanks 
must not penetrate each other and relative displacement is zero. The crack flanks are 
assumed to be friction-free so that shear stress along the crack is zero. Domain bound-
ary conditions depend on the external supporting conditions of the domain. 

To model the plastic zone, elastic-ideal plastic material behaviour is considered. Due 
to this non-linear constitutive law, the previously described superposition principle does 
not seem to be applicable. But the following approach allows its use in a stepwise itera-
tion: The activated slip band in front of a crack tip is discretised by dislocation disconti-
nuity boundary elements. In a first calculation step sliding is suppressed in the slip band 
and shear stress is calculated for linear material behaviour. New boundary conditions 
are assigned to elements on which plastic shear stress is exceeded. Sliding is no longer 
suppressed but shear stress is set to the shear strength. The system of equations (Eq. 7) 
is resolved iteratively until plastic shear stress is no longer exceeded on any element. In 
each iteration step linear elastic material behaviour is considered so that the superposi-
tion procedure remains applicable. 

The previously described method is only valid for a crack in one grain, however, a 
microstructure consists of many grains. Thus, a method to couple grains on their com-
mon boundaries is described as follows. 

 
Coupling of Individual Grains 
Once the superposition procedure has been carried out on each grain containing a crack 
all grains of a microstructure need to be assembled. As the grains are firmly connected 
the absolute displacement along a common boundary of two grains is equal for both of 
them. The stress state along this boundary also needs to be the same for the two coupled 
grains. Using this additional information for all boundaries of the grains under consid-
eration allows to combine them to a microstructure. 

Below, the presented boundary element method is applied to simple fracture         
mechanics problems. The results are compared to reference solutions for verification. 
 
 
VERIFICATION 
 
To verify the boundary element method discussed in this paper a tensile specimen with 
a horizontal crack is studied (Fig. 2). Stress intensity factors KI are calculated and com-
pared to a reference solution [7]. The modelled specimen is five times longer than wide. 
In this case the length has negligible influence on the stress field at the crack tip. There-
fore the result can be compared to the reference in which the specimen length is infinite. 
The crack length 2a is half the specimen width 2w. Specimen boundaries and crack are 
discretised by varying numbers of boundary elements N. The influence of the mesh on 
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KI compared to the reference solution is shown in Fig. 2. Here the relative error in KI is 
plotted against the ratio of the number of crack elements Ncrack (80, 120, …, 280 equally 
sized elements) by the number of elements along the specimen boundary Nboundary (96, 
120, 144 equally sized elements). 

Figure 2 shows a decrease in error with an increasing ratio Ncrack/Nboundary which is 
mainly met by the meshing of the crack. Tending to zero, the curves prove convergence 
of the method. 
 

         
 

Figure 2. Tensile specimen with horizontal crack and verification results. 
 

A second verification is carried out on a crack going through the interface of two 
bounded half planes of dissimilar media (Fig. 3). The ratio between Young’s modulus 
E1 and E2 is given by Γ. As infinite half planes cannot be considered by this BE-
approach, two domains are connected, which are large compared to the crack length. 
The crack is discretised by 200 elements and stress intensity factors are determined at 
crack tip B for different ratios of Young’s modulus Γ. In Figure 3 the result is plotted 
against Γ and compared to a reference solution given in [7] showing good accordance. 
The errors are less than 0.35%. 

The presented hybrid boundary element method is capable to solve fracture          
mechanics problems. In the following it is applied to simulate short crack propagation 
in a microstructure. 
 

         
 

Figure 3. Crack going through the interface of two bounded half planes of dissimilar 
media and KI results. 
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SHORT CRACK PROPAGATION IN A MICROSTRUCTURE 
 
Simulation of short crack propagation is exemplarily shown in a very simple micro-
structure consisting of three rectangular grains (Fig. 4). The Young’s modulus E1 of the 
grains left and right is equal but can be different from the Young’s modulus E0 of the 
grain in the middle. Poisson’s ratio is the same for all grains being embedded in a large 
plate with the same elastic properties as the middle grain containing a crack. This crack 
lies on an activated slip plane of an angle of 30° to a horizontal line. Sliding occurs on 
this plane where the shear strength is reached. In the neighbouring grains, possible slip 
planes are present in the extension of the activated slip plane. Different simulations of 
stage I-crack growth are carried out to take different ratios of E1 by E0 into account. 

At first the Young’s modulus is identical for all grains E1=E0 and therefore the crack 
is in a homogeneous plate. In this case there is no need to discretise the grain bounda-
ries; crack propagation is simulated in a large plate where the number of elements along 
the boundary of each grain is zero: NGB=0. The range of crack tip slide displacement 
∆CTSD between the maximum and minimum loaded state is evaluated as it determines 
short crack propagation. In Figure 4 results are plotted (in the dotted line) against the 
half projected crack length normalised by half the grain width. 

 

         
 

Figure 4. Crack in a microstructure and ∆CTSD results. 
 

Starting from a very short crack length, ∆CTSD increases due to the advancing crack. It 
decreases when the crack tip approaches the grain boundary, which limits sliding on the 
slip plane. When overcoming a critical stress intensity the slip planes in the adjacent 
grains are activated and the plastic zone extends into the neighbouring grains. This 
causes a jump in ∆CTSD. It increases even more with the growing crack and then de-
creases due to the influence of the next grain boundary. 

In another simulation the grain boundaries are discretised by NGB=60 elements per 
grain but the Young’s modulus is still the same for all grains. ∆CTSD is plotted (as a 
continuous line) in Fig. 4 showing no difference to the result before. The mesh does not 
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have an influence on the outcome, proving that the superposition procedure can be ap-
plied although elastic-plastic material behaviour is considered in the slip plane. 

To study the influence of varying elastic properties, Young’s modulus of the grains 
left and right is chosen 1.5 times higher than of the grain in the middle (E1=1.5E0). 
Loading in the middle grain decreases as it is softer than the adjacent grains. Therefore 
∆CTSD starts at a lower level. The critical stress intensity in the neighbouring grains to 
activate the slip bands is identical to the homogeneous case but is reached at a larger 
crack length. When the crack overcomes the grain boundary, the increase in ∆CTSD is 
less than before as the crack now grows in the stiffer grains. In another case the grain in 
the middle is 1.5 times stiffer than the adjacent grains. Here the critical stress in the 
neighbouring grains, which is still unchanged, is achieved at a lower crack length. 
When the crack - not only the plastic zone - overcomes the grain boundary, ∆CTSD 
decreases as crack propagation occurs in softer material with less loading. 

A further simulation in this microstructure focuses on the stress field in the adjacent 
grain at the end of the plastic zone. Crack propagation is simulated in the middle grain, 
but no certain slip plane is considered in the neighbouring grain. The shear stress τ is 
evaluated in points on a circular arc with a small radius re at the end of the plastic zone 
(Fig. 5a). Here, the absolute value of shear stress is plotted against the angle φ under 
which the stress has been evaluated. Figure 5 (b) shows the evolution of maximum 
shear stress |τmax| when the crack tip advances towards the grain boundary. The influ-
ence of varying elastic properties of the grains has been taken into account. At certain 
crack lengths depending on these properties, |τmax| reaches a critical shear stress level τS. 
This indicates that the stress intensity is sufficient to activate a slip band which is 
aligned in the respective direction φ(|τmax|) of the maximum shear stress. Figure 5 (c) il-
lustrates that the crack lengths leading to the activation of a slip band are linked with 
varying angles of maximum shear stress φ(|τmax|). If activation of differently aligned slip 
planes is possible in the neighbouring grain, varying elastic properties influence which 
slip plane is activated. As the crack follows the plastic zone, elastic properties of the 
grains play an important role determining crack paths. 
 

 
 

Figure 5. Evaluation of the stress field in the adjacent grain. 
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CONCLUSIONS 
 
A two-dimensional stage I-crack propagation model has been presented that discretises 
the crack by dislocation discontinuity boundary elements and uses the direct boundary 
element method to mesh grain boundaries. A superposition procedure couples these 
different boundary element methods to employ them in one model. This model is capa-
ble to reproduce the oscillating growth rate of short fatigue cracks. Varying elastic 
properties of the grains are considered and their influence on short crack propagation is 
studied. A change in crack tip slide displacement determining crack propagation is ob-
served. Furthermore, the shear stress field in a grain adjacent to a crack-containing grain 
is influenced. This stress field decides which of the diverse possible slip bands becomes 
activated when the plastic zone overcomes the grain boundary. The crack follows the 
plastic zone and therefore the crack path can vary. Thus, considering the individual elas-
tic properties of the grains provides additional reliability to the prediction of crack 
propagation rates and crack paths. 
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