
Numerical investigations on the influence of 3D frictional 
crack surface interaction 
 
 
W. Weber1, K. Willner1, P. Steinmann1 and G. Kuhn1  
 
1 Chair of Applied Mechanics, University of Erlangen-Nuremberg, Egerlandstraße 5, 

91058 Erlangen, Germany. 
 
wilhelm.weber@LTM.uni-erlangen.de 
 
 
ABSTRACT. The influence of the 3D frictional crack surface interaction on the frac-
ture mechanical parameters as well as on the crack path is investigated numerically. 
For the solution of the boundary value problem the 3D dual boundary element method 
in terms of the discontinuous formulation is utilized. This method is especially suited for 
contact problems because it deals directly with the discontinuities at the crack surfaces. 
The contact problem is solved by the application of a penalty method. Coulomb’s fric-
tional law is utilized for the consideration of the dissipative nature of frictional contact. 
For discrete steps within one load cycle the stress intensity factors are determined by an 
extrapolation procedure from the stress field. Based on the analysis of a load cycle, the 
cyclic stress intensity factors are obtained. For the simulation of crack propagation an 
implicit integration scheme of a crack propagation law implemented in terms of a pre-
dictor-corrector scheme is applied. The influence of the crack surface roughness is 
shown by numerical examples. 
  
 
INTRODUCTION 

 
For a better understanding of the behavior of cracks the numerical simulation of 3D 

fatigue crack growth is a useful tool. Especially for mixed mode problems crack surface 
interaction has to be taken into account within the simulation procedure. Due to the non-
linear nature of crack growth an incremental procedure has to be applied. 

The boundary element method (BEM) is especially suited for the solution of linear-
elastic stress concentration problems. For cracked structures a special formulation 
namely the 3D dual boundary element method (Dual BEM) [1] in terms of the dual dis-
continuity method (DDM) [2] is applied. Moreover, by the application of the DDM the 
discontinuities of the displacements and tractions are utilized as variables at the crack, 
which are exactly the required variables for the consideration of crack surface contact.  

Then, the SIFs as well as the T-stresses are evaluated for discrete points along the 
crack front by an extrapolation method at each discrete time step of the stress analysis. 
The optimized evaluation of very accurate SIFs along the crack front is done from the 
numerical stress field by a regression technique controlled by the standard deviation [3]. 

577



The analysis of the time steps of a characteristic load cycle yields the cyclic fracture 
mechanical parameters. 

 A 3D crack growth criterion [4] is evaluated for the determination of the crack ex-
tension and the crack deflection. The maximum tangential stress (MTS) criterion [5,6] 
has been established for the calculation of the kink angle. The crack extension results 
from the evaluation of a crack propagation rate formulation. In case of mixed mode 
problems an equivalent cyclic SIF is required. This value is determined by the criterion 
of the maximum energy release rate [7].  

Starting from an initial crack front a new one can only be predicted in a linear way. 
For the reduction of the linearization error, corrector steps are following a predictor step 
[4]. Furthermore, an optimization of the new crack front with respect to its location and 
shape is obtained.  
 
 
STRESS ANALYSIS 
 
The boundary value problem of the cracked domain cf. Fig. 1 is solved by the 3D dual 
boundary element method (3D Dual BEM) [1] in terms of the dual discontinuity method 
(DDM) [2]. The general time dependency of the contact problem is considered by the 
utilization of a rate formulation.  

 

 
 

Figure 1. Sketch of the boundary value problem. 
 
The domain 3ℜ∈Ω  is assumed to be homogeneous and isotropic with linear elastic 

material behavior. The whole boundary Γ  of the domain Ω  consists of the normal 
boundary nΓ  and the coincident crack surfaces cΓ  and cΓ , which only differ in the 
opposite normal direction. Along the boundary Γ  Dirichlet and Neumann boundary 
conditions are prescribed.  

For separating the coincident crack surfaces the dual discontinuity method is applied. 
Within this method the discontinuities of the displacement rates c

i
c
i

c
i uuu &&& −=ˆ  and the 

traction rates c
i

c
i

c
i ttt &&& +=ˆ  are introduced as new variables at the crack. By the utilization 

of the symmetric properties of the kernel functions, all quantities of one of the coinci-
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dent crack surfaces are eliminated and only the remaining crack surface (e.g. cΓ )  has to 
be considered within a boundary element analysis. 

After the discretization of the boundary the relevant boundary integral equations 
(BIEs) are evaluated in the framework of a collocation procedure. For points ξ  at the 
normal boundary the strong singular displacement rate BIE  

 
 (1) 

 
                       
is evaluated. At the considered crack surface the hypersingular traction rate BIE  
 
  (2) 
 
                            
is taken into account. Therewith the unknown boundary values at the outer boundary 

and the displacement discontinuities at the crack can be determined if the crack surface 
belongs to the Neumann boundary. For the determination of the actual displacements at 
the crack surface the displacement rate BIE  

 
  (3) 
 
                       
is evaluated. The crack surface interaction leads to additional contact tractions cont

it  at 
the crack such that the total tractions read as cont

i
load
ii ttt += . Without loss of generality, 

initially unloaded cracks are considered in the present paper, 0=load
it . Due to the ac-

tion-reaction principle the contact tractions are equal according to the amout but with 
opposite sign. Therewith, the discontinuities of the tractions vanish, 0ˆ =cont

it . 
For the solution of the contact problem the penalty method in the framework of a ra-

dial return mapping algorithm [8] is applied. Within this method small, relative, reversi-
ble displacements revcu ,ˆ  of the contact surfaces are allowed. In the present context the 
contact tractions are linked to these displacement discontinuities via a constant normal 

nρ  and tangential tρ  stiffness, revc
tt

c
t

c
nn

c
n ii

utut ,ˆ,ˆ ρρ == . 

In case of slip irreversible, tangential displacement discontinuities irrc
ti

u ,ˆ  have to be 
considered. Therefore, an additive decomposition of the tangential displacement discon-
tinuities into a reversible revc

ti
u ,ˆ  and an irreversible irrc

ti
u ,ˆ  part is applied, irrc

t
revc

t
c
t iii

uuu ,, ˆˆˆ += . 
For the detection of the slip state, Coulomb’s frictional law is utilized. 
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CRACK GROWTH ALGORITHM 
 
Based on the results of the stress analysis the new crack front is generated in three steps 
as shown in Fig. 2. 

 

 
 

Figure 2. Three steps of an increment 
 
First, the stress intensity factors (SIFs) are calculated for each time step. For discrete 

points along the crack front (see Fig. 2a) the SIFs and T-stresses are calculated from the 
stress near field by an extrapolation method. The results of the utilized regression analy-
sis are optimized by the minimization of the standard deviation [3]. For points Pi at a 
smooth crack front the typical stress distribution is given by [9]: 
 

 ∑
=
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M
ij

M
ij rOPTf
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PKPr )()()(

2
)(),,( ϕ

π
ϕσ .  (4) 

 
The SIFs KM (M = I,II,III) characterize the intensity of the typical square root singu-

larity while Tij denote the T-stresses. )(ϕM
ijf  are the angular functions corresponding to 

the mode M. The cyclic equivalent SIF )(PKeqΔ  is determined by the analysis of a rep-
resentative load cycle via ),(),()( loequpeqeq tPKtPKPK −=Δ . The time, when the maxi-
mum equivalent SIF is present, is denoted by upt  and lot is the time, when the minimum 
equivalent SIF is present. According to the cyclic equivalent SIF the cyclic SIFs 

)(PKMΔ  are defined by ),(),( loMupMM tPKtPKK −=Δ . 
In the second step the new position of the crack front is determined by the evaluation 

of a suitable crack growth criterion based on the SIFs. The obtained crack extension as 
well as the kink angle define the new position of the point Pi, cf. Fig. 2b. The new posi-
tions of the crack front points set up the new crack front.  

Finally, the gap between the old and the new crack front has to be closed [10]. Two 
possibilities are available. On the one hand a new row of elements is inserted. This is a 
good choice if there are significant crack extensions for example in case of predictor 
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steps. On the other hand in case of corrector steps only small crack extensions along the 
whole crack front occur. Therefore, the nodes of the old crack front are moved towards 
the new crack front.  
 
 
PREDICTOR CORRECTOR SCHEME 
 
Starting from an initial crack front a new one is predicted. Since only the state of stress 
and strain of the initial crack front is known, the prediction is performed in a linear way. 
Due to this linearization an error has been made. By the consideration of the stress state 
of the predicted crack front, this error can be estimated and the crack front can be cor-
rected with respect to its shape and location.  
 
Predictor 
For the determination of the crack extension )( APaΔ  for a point AP  at the initial crack 
front (superscript A) a crack propagation rate e.g. the Paris law is evaluated for a user-
specified numer of load cycles lcNΔ : 
 

 ( ) lc
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A NPK

dN
daPa Δ⎟

⎠
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⎜
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⎛ Δ=Δ )()( . (5)  

 
The crack deflection )( APϕΔ  is calculated by the maximum tangential stress crite-

rion [5]. In the present case of non-proportional mixed mode conditions the SIFs are 
replaced by the ranges of the SIFs [6]: 
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Corrector 
In the next incremental loop the state of stress at the predicted crack front (superscript 
B) is additionally known. Therewith, the cyclic equivalent SIF is approximated between 
the initial and the predicted crack front according to its general definition by [4] 
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with the virtual initial crack length 
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BP  is the location of the point AP  at the predicted crack front. Therewith, the num-

ber of load cycles is re-calculated via 
 

 ∫
Δ+
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0
)),((

1)(  (9) 

 
and the predicted crack extension is replaced by 
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until the relative error lc

A
relc NPNN ΔΔ−Δ /)(  is smaller than a user-specified toler-

ance. By the consideration of the direction of crack growth )( BPϕΔ at the predicted 
crack front the corrected crack deflection is obtained by 
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EXAMPLES 

 
The first example is chosen to investigate the required number of load cycles for the 
simulation in order to obtain a characteristic one for the fracture mechanical analysis. 
The second example shows the influence of friction on the crack path. 
 
Single edge crack specimen 
A beam with a rectangular cross section as shown in Fig. 3a with an edge crack at half 
of the length is taken into account. The beam consists of the material steel (E=210 GPa, 
ν=0.3) and it is loaded by a time-invariant compressive force F and a time-depending 
torsional moment T(t). In Fig. 3b the loadings versus time are ploted. 
 

 
 

Figure 3. geometry and loading of SEC-specimen. 
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       The stress analysis has been carried out for different frictional coefficients μ. The 
resulting hysteresis curves of the KIII-value at the middle of the crack front are illus-
trated in Fig. 4.   
 

 
 

Figure 4. hysteresis curves. 
 

For μ=0 the SIF is directly linked to the loading moment. In case of small frictional 
coefficients (μ=0.1 and μ=0.15) steady behavior is already observed after the frist load 
cycle. For μ=0.2 at least three load cycles are required until steady behavior is present.  

Overall, the SIF oscilates around the constant mean value of 65 MPa mm0.5 with a 
decreasing amplitude for an increasing frictional coefficient.  
 
Compressive Specimen 
A plate as scetched in Fig. 5a with a plane initial crack, that is slanted by 45° to the mid-
cross section, is loaded by a compressive force F , which oscilates between 100 kN and 
200 kN, cf. Fig. 5b.  
 

 
 

Figure 5. geometry and loading of plate 
 

The specimen consists of the material steel with the Young’s modulus E=210 GPa 
and the Poission ratio ν=0.3. For the simulation of crack propagation the Paris law is 
utilized: 
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The simulation has been carried out with the frictional coefficients μ=0.0 and μ=0.1. 

Figure 6 shows the resulting crack paths. 
 

 
 

Figure 6. Crack path with number of load cycles in millions. 
 

The crack paths of both simulations are approximately identical. However, obvious 
differences concerning the number of load cycles can be observed. In both simulations 
the cyclic stress intensity factor is decreasing while the crack is growing.  
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