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ABSTRACT. In gigacycle fatigue, crack initiation and growth most often occurs from 
internal defects in the material including holes and inclusions. Occasionally a surface 
defect of hemi-spherical shape is also encountered. In order to attempt to understand 
the stresses near these imperfections and the stress intensity factors for cracks initiating 
from them, some elastic stress formulae will be developed here. For the inclusions 
mismatches in elastic properties and sizes will be treated for realistic examination of 
their effects. It is hoped that convenient availability of such formulae may enhance an 
understanding of gigacycle fatigue initiation and crack growth. 
 
 
SPHERICAL CAVITIES AND INCLUSIONS 
 
Under uni-axial stress, σ , the spherical cavity will have a stress concentration factor, 

tK , which is defined by:  
σ max = K tσ  (1) 
The concentration factor for this case is given in standard texts on Theory of Elasticity 
[1] as: 
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On the other hand for tri-axial tension, σ , the stress concentration factor is simply: 
2/3=tK  (3) 

Moreover, if instead of an internal spherical cavity, the hemispherical surface cavity is 
the case of interest, the increase in the stress concentration factor is less that 2% for the 
uni-axial case or: 
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The stress outside the spherical cavity under uni-axial loading is given at a radial 
distance, r , compared to the radius of the sphere, R, by: 
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Further for the spherical cavity under tri-axial loading, σ , with internal pressure, p, the 
result in spherical coordinates is: 
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Both of these formulae give the stresses on a prospective crack plane extending outward 
from the cavity. For the latter case in Eq. (6) the radial displacement from the surface of 
the cavity outward is given Eq. (7) where E is the elastic modulus. 
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1+ ν( ) σ + p( )
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For the spherical inclusion with external pressure, p, the radial displacement of the 
surface is: 

ur−inclusion = −
1− 2 ′ ν ( )pR

′ E 
 (8) 

where ′E  and ′ ν  are the elastic constants of the inclusion. 
If the spherical inclusion is larger than the spherical cavity it occupies, then there will 
be a contact pressure, p, which will also depend on the external hydrostatic tension, σ . 
The mismatch shall be that of an inclusion which is larger by a radial amount, Δ . Then 
the compatibility of the radial displacements between the cavity and inclusion can be 
expressed as: 
ur− inclusion + Δ = ur−cavity        (at r = R) (9) 
Combining Eqs. (7, 8 and 9) leads to an additional stress outside the cavity as: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

′
′−

+
+

⎟
⎠
⎞

⎜
⎝
⎛ Δ

==
EER

Rr ννσθ
21

2
1

2
 (10) 

which should be added to the previous stress result Eq. (6) with r = R  and p=0. Under 
such circumstances the pressure, p, generated between the inclusion and the matrix is 
given Eq. (11). The contact between inclusion and matrix is lost if 
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           (compression) (11) 

 
Now, if there is no mismatch and the inclusion is bonded to the external body, then the 
stress concentration is: 
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Notice that for ′ E = 0 that Kt = 3 2; for ′ E = E, ′ ν = ν  that K t = 1; 

and for ′ E = ∞ that Kt =
3ν

1+ ν
 which is as expected. With this in mind the stress in the 

body next to the inclusion is: 
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This form accommodates a bonded inclusion of differing elastic properties and with a 
mismatch in its size compared to the void in the main body. As a first approximation it 
is suggested here for the case of uni-axial stress applied to the body that the Kt  be 
increased by the ( ) factor in Eq.(2). 
 
 
CYLINDRICAL CAVITIES AND INCLUSIONS 
 
For cylindrical cavities and inclusions the case may be plane stress or plane strain 
depending on constraint conditions. For that reason it is convenient to use modified 
elastic constants, G, the shear modulus, and β  which depends on the Poisson’s ratio but 
changes with the constraint. They are defined as: 

G =
E

2 1+ ν( )
 and β =1−ν  for plane strain and β =

1
1+ ν

 for plane stress. For the 

inclusion they shall be written with a prime. For plane stress it is assumed that the 
cylindrical void and the cylindrical inclusion are smooth (frictionless) and unbounded. 
For both constraint cases the biaxial (or tri-axial) exterior applied stress is taken as σ , 
and the contact pressure between the void and cylinder is p. 
The classical equations for the stresses in the outer body are: 

σ r (r ≥ R) = σ −
p + σ ( )R2
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p + σ ( )R2
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which lead to the radial displacement given by:  

2Gur (r ≥ R) = 2β −1( )σ r +
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r
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The compatibility of displacements between the void and inclusion is the same as 
previously for the inclusion of larger radius by Δ  than the void, the result is: 
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which leads to the pressure between inclusion and matrix:  
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This can be used to get the maximum stress in the body, Eq. (19) as long as contact is 
not lost, p ≥ 0. 
σθ −max(r = R+) = p + 2σ  (19) 
Further, the stress concentration factor in Eq. (19) of 2 can be changed to 3 for uni-axial 
exterior applied stresses, σ , as a first approximation for that case of stressing. 
 
Finite element analysis 
Finite element computations have been performed in order to validate the proposed 
analytical solutions. All loading cases presented above have been computed: 
axisymetrical pressure and axial loading, plane stress and plane strain pressure and axial 
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loading. In all cases we consider an inclusion and a matrix of differing elastic 
properties; and with a mismatch in the inclusion size compared to the void in the matrix. 
The elastic properties and mismatch values have been chosen so that reasonable 
maximum stress (around 100 MPa) was obtained in the matrix and in the inclusion 
when the external loading was zero (stress induced by the mismatch only). The 
following values were chosen: E=220GPa, ν =0.3, E’=440GPa, ν=0.28 and 

R/Δ =0.001. 

 
Figure 1. Comparison between analytical and FEA results for )( += Rrθσ  versus 

external hydrostatic tension stress σ . 
 
All the results are presented figure 1. For each loading case the analytical and FE result 
are compared. For the pressure loading cases (left part of the figure) analytical and FEA 
results show a perfect match independently of the stress state. The reason why two 
different slopes are observed is the following. For low external loading inclusion and 
matrix are in contact; the FEA results match the analytical solution that take into 
account the inclusion. However, once the external loading reaches a critical value the 

External axial stress (MPa) 

External hydrostatic tension stress (MPa) 

External hydrostatic tension stress (MPa) 

External hydrostatic tension stress (MPa) 

498



contact is lost due to the matrix deformation. For pressure values above this critical 
pressure the FEA solution matches the analytical solution corresponding to a void in an 
infinite matrix as expected (second slope). 
 
For the axial loading case (right part of figure 1) FEA and analytical results show 
reasonably good match but less than in the pressure case. It has to be noticed that the 
global to local stress/external stress is not linear anymore. The reason is that in this 
case, the contact lost in between the inclusion and the matrix is not a linear function of 
the external load so that the global to local stress response can not be linear either. 
 
STRESS INTENSITY FACTORS AT CRACK TIPS GROWING FROM VOIDS 
AND INCLUSIONS SOME WITH MISMATCHED SIZES 
 
In order to give estimates of the crack tip stress intensity factors for cracks starting at 
the voids or inclusions and growing to failure, asymptotic approximation methods will 
be adopted. It consists of exactly fitting the exact stress intensities for small racks sizes 
and also for large crack sizes and then fitting a smooth cubic curve between these exact 
solutions. As a first example the results of such a method are presented for a 
hemispherical void on the surface of a solid, such as might occur due to a corrosion pit. 
 
Cracking from a hemispherical surface void with a spherical radius R and a crack of 
depth a measured from the surface of the hemisphere, the asymptotic approximation of 
the crack tip stress intensity factor is (making use of the 1.015 factor for the half plane 
effect): K =1.015σ πa ⋅ F x,ν( ) where x =

a
R
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Further the coefficients A, B, C and D are found to be: A ν( )=1.683+
3.366
7 − 5ν

 

B ν( )= −1.025 −
12.3

7 − 5ν
,    C ν( )= −1.089 +

14.5
7 − 5ν

,   D ν( )=1.068 −
5.568
7 − 5ν

  (22) 

These coefficients are for both uniaxial stress or biaxial stress, σ , applied parallel to the 
surface from which the pit emanates. However, the 1.015 factor in Eq. (20) is for the 
deepest part of the crack front away from the surface forming the hemisphere.  
With an angle θ  measured from a line perpendicular to that surface, the factor, 1.015, 
may be replaced by: f θ( )=1.210 − 0.195 cosθ       for   −80° ≤ θ ≤ 80°( )   (23) 
in order to get the stress intensity factor, K, along the crack front. Adjustments may be 
made in these values for K due to the imperfection in the hemispherical shape or 
unequal depth of the crack, a, around the hemisphere as suggested in Appendix I of the 
“Stress Analysis of Cracks Handbook” by Tada, Paris, and Irwin [2]. 
 
For the stress intensity factor for a crack growing from a mismatched in size spherical 
inclusion or void the analysis follows. The crack size, a, measured from the surface of 
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the spherical inclusion into the surrounding body shall be represented here by, a , 
measured from the center of the inclusion or void. This is expressed by: a = R + a , 
where R is the radius of the sphere. This assumes no difference in material properties. 
For very large cracks ringing the sphere, 1/ >>Ra , the mismatched spherical inclusion 
is larger by imposing, Δ, as the size of the mismatch. For a large ring crack the load, P, 
imposed on the exterior body is: 

)1(2 2ν−Δ= ERP  (24) 
The stress intensity factor for the opposing concentrated loads, P, in the center of a 
circular crack is: 
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The additional stress intensity factor due to uniform normal stress, σ  perpendicular to 
the crack (any additional normal stresses parallel to the crack have no effect) is: 
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where the sum of these give the total stress intensity factor for large cracks: 
Ktotal = KΔ + Kσ  (27) 
On the other hand for small cracks emanating into the surrounding body from the 
inclusion, +≅+= 1/)(/ RaRRa  the results are: 
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From the first expression in Eq. (28) and Eq. (25) the final asymptotic approximation is: 
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where: ( ) ( ) ( ) ( )32 /83.1/44.2/5.01/ aRaRaRaRF −+−=Δ  (30) 
Further for the asymptotic relationship for σ the result is:  
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where: ( ) ( ) ( )2/015.0/085.0900.0/ aRaRaRF ++=σ  (32) 

And again the final approximation for 1≤
a 
R

≤ ∞ combines Eqs. (29) through (32) with: 

K total = K Δ + Kσ  (33) 
 
Now, consider crack tip stress intensity factors for cylindrical inclusions with mismatch 
in both size and material elastic properties. For small cracks into the exterior body of 
length, a, as compared to the radius, R, of the cylindrical inclusion, or 1/ <<Ra , the 
stresses at the initial crack site, σ 0 , and its reduction at the crack tip, σ1, as caused by 
the gradient away from the inclusion are: 
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σ0 = σθ r = R( )= 2σ + p (34) 
where as before σ  is the externally applied biaxial stress and p is the contact pressure. 

Then: σ1 =
dσθ r = R( )

dr
a = 2σ 1− 2β
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where ( ) '/1211 GGGeff −′+= β  (36) 
 
Now, for the case of no misfit between the inclusion and exterior body, and bonded 
together for plane strain or smooth frictionless contact for plane stress between them, 
the stress intensity factor is of the form:    

( )GGRaFaK eff /,,/ γπσ σσ =   (37) 
where σF  is defined by Eq. (38) and where GG /'=γ  which applies for 1/ <<Ra . 
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Now, for large cracks the values of Fσ  approach asymptotically to constants which are: 
 Fσ ( )=1 (for cracks on both sides of the inclusion) 
 ( ) 2/1=σF  (for a crack on one side of the inclusion) 
Further for the full range of crack sizes ∞<< Ra /0  the cubic asymptotic fit of the end 

curves will be applied. It is: Fσ x,γ,γeff( )= A + B x
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where:  ( ) ( )( )effeffA βγγγγ −++= 1)1(122.012,  

 ( ) ( )( )effeffB βγγπγγ 21)1(073.01
4

, −++−=  (40) 

For cracks on both sides of the incusion: 
 ( ) BAC eff 233, −−=γγ    ,   ( ) BAD eff ++−= 22,γγ  (41) 
where:  Rax /=   ,  GG /'=γ   ,   GGeffeff /=γ  
 
However, for a crack on one side of the inclusion Eqs. (41) should be replaced by Eqs. 
(42). This completes the discussion for the externally applied stresses with differing 
elastic properties of the inclusion. 
 BAC 23121.2 −−=    ,   BAD ++−= 22  (42) 
Next the case of a radial difference, Δ , interference between the inclusion and its nest 
in the exterior body will be considered. For small cracks 1/ <<Ra  on one side or both 
sides of the inclusion the result is: 
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For large cracks, 1/ >>Ra , the result for a crack on one side of the inclusion is: 
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The asymptotic interpolation between these solutions for large and small cracks on one 
side of the inclusion is: 
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with:  A γ( )= 2πf0    ,   B γ( )= −8 f1   ,   C γ( )= −6πf0 +16 f1   ,   D γ( )= 4πf0 − 8 f1 (48) 
and:  )1/(122.010 γ++=f    ,     )1/(073.011 γ++=f  (49) 
 
Finally, these results, from Eqs. (37) through (49), may be combined to get the total 
stress intensity factor from: Ktotal = Kσ + KΔ  (50) 
The intended application of this work is to analyze the initiation and growth of cracks in 
gigacycle fatigue. For that purpose Eq. (50) putting in the maximum stress, σ , to get 
the maximum stress intensity factor. For the range of the stress intensity factor, since 
the KΔ  imposes a constant stress intensity factor, the range should be computed from 
the Kσ  only by Eq. (51). But, Eq. (50) shows that the R ratio max,min, / totaltotal KK  is 

different from max,min, / σσ KK  due to the cyclic loading. 
ΔKtotal = ΔKσ  (51) 
 
 
CONCLUSION 
 
The local elastic stresses and the theoretical stress concentration factors near inclusions 
mismatches in elastic properties and sizes, and included in a matrix under uniaxial 
loading or external hydrostatic tension were computed. The stress intensity factors for 
cracks initiating from them was approximated too by some elastic stress formulas. It is 
hoped that convenient availability of such formulas may enhance an understanding of 
gigacycle fatigue initiation and crack growth. 
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