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ABSTRACT. A mechanical model for simulating intergranular crack propagation is 

presented. In order to understand fracture mechanics and processes that occur in a 

polycrystalline body it is necessary to accommodate a large number of parameters, 

including the macroscopic effects of load together with stress state and component 

geometry. A dislocation analysis based on the boundary element method is introduced 

to model crack growth through microstructures. Simulated microstructures are 

generated using the Voronoi algorithm. Each grain is assigned with a set of randomly 

oriented slip directions in which plastic flow by shear is allowed. A uniform stress is 

applied that drives the crack, emanating from a free surface, along the grain 

boundaries. The crack is advanced quasi-statically along a GB path, solving for the 

distribution of dislocations within plastic zones emanating from the crack tip and the 

crack opening. The stress intensity factor is calculated at each step. At each triple 

junction the crack kinks towards the direction of the highest stress intensity. A 

superdipole (SD) algorithm is introduced to save simulation time without loosing 

important information and necessary geometric details. At the present time the factors 

controlling the path taken by a crack are not completely understood. By limiting the 

crack advancement to grain boundaries and applying the introduced dislocation model, 

relations between crack advancement, CTOD and stress intensity factors (SIF) can be 

determined. 

 

 

INTRODUCTION  
 

Today, the process of intergranular crack propagation is still not well understood. 

Statistical analysis of crack growth in a given material may be useful for understanding 

the phenomenology and mechanisms of intergranular crack propagation. Most 

approaches dealing with statistical analysis use very simplified fracture models 

integrated in Monte Carlo simulations to obtain crack trajectories in randomly assigned 

microstructures. 

Arwade et al. [1] analyzed intergranular cracks in polycrystal materials for different 

crack propagation laws statistically. Their crack propagation heuristic is based on 

simplified representations of the stress field in a microstructure, generated with the 

Voronoi algorithm, and GB material resistance. The crack propagates in the direction of 

maximum circumferential stress or the direction of maximum energy release rate (along 
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weakest boundary). The rate of variance growth depends strongly on the empirical crack 

growth direction law that controls the relative importance of the stress acting on a GB 

and the misorientation at the GB in determining the direction of crack propagation. 

A three-dimensional Monte Carlo approach has been done by Kamaya and Itakura [2] 

using Finite Element Analysis (FEA) in a polycrystalline body generated by Voronoi 

tessellation. Both the local stress distribution and inclination of the grain boundaries 

were taken into account in determining crack initiation and propagation based on 

damage mechanics. 

In order to reduce the high computational cost of full FEA simulation, Jivkov et al. 

[3,4] introduce a two- and three-dimensional mechanical model for simulating 

intergranular stress corrosion cracking using beam-type FEA. The model accounts for 

mechanical crack driving force and the formation of ductile bridging ligaments by 

resistant boundaries as well as branching. Monte Carlo type simulations with randomly 

distributed susceptible and resistant boundaries as well as resistant boundary failure 

strengths are performed in a regular hexagonal grain pattern. The model does not 

account for kinetics. 

Another way of modeling crack propagation is the application of dislocation models. 

Dislocation models can calculate local stress fields accurately, are low in calculation 

time and flexible in accounting for complex and complicated crack geometries through 

realistic, irregular microstructures. Most of the recent studies deal with transgranular 

fatigue crack growth. The work done by Künkler et al. [5], Riemelmoser et al. [6,7,8,9] 

or Hansen and Melin [10] use a dislocation based Boundary Element Method (BEM) to 

model transgranular fatigue crack growth. A similar approach of a static discrete 

dislocation based BEM will be applied in this paper to model intergranular crack 

propagation. 

 

MODEL DESCRIPTION 

 

General 
The following section describes algorithms for simulating the quasi-static propagation 

of a simple crack emanating from the free surface at an arbitrary angle φ and length a. 

Plane strain conditions are assumed. The sample dimensions are large compared to the 

crack of the length a. The free surface is taken to be parallel to the y-axis. The remote 

loading σapp is characterized by a uniform stress in the y-direction (see Figure 1). Each 

boundary element in the crack contains a collocation point e

ic  and both a dipole of 

climb character and a dipole of glide character in order to simulate mode I and mode II 

displacements respectively. The boundary elements are made gradually smaller the 

closer to the crack tip they are located so as to guarantee a higher accuracy in that area. 

The length li of boundary elements can be calculated knowing the crack length and the 

number of boundary elements and follow the geometric progression: 108.1
−

⋅= ii ll . 

Uniformly sized boundary elements in the slip planes contain a collocation point p

ic and 

a dipole of glide character. 

448



 
Figure 1. Mixed mode crack at a free surface 

 

At each growth increment an iterative process is used to find a consistent equilibrium 

solution of the strength of all dislocation dipole elements.  A set of simultaneous linear 

equations is formed in which stresses at each collocation point is given by the 

(unknown) Burger’s vectors of each of the dipoles through a matrix representing the 

geometric arrangement.  Stresses considered are the normal and shear stresses across the 

crack plane which are forced to zero and the shear stress along the glide dipoles 

representing plasticity which is forced to a constant critical flow stress in active regions.  

In the first iteration the stress contributions initially come from the far field applied 

stress, the dipole elements representing the crack and the stresses from dislocations 

generated by plastic flow in previous increments.  Using this, a solution is found for the 

Burger’s vectors of dipoles representing the crack, and the shear stress is then calculated 

at all dipoles representing plastic flow.  Any plasticity dipole for which the stress is 

above the critical value is then activated and added to the set of linear equations.  The 

new set of equations is solved, now including some plastic flow, and stresses are 

recalculated to see if more dipoles need to be included.  This process is iterated until the 

plastic zones have expanded to a point at which stresses are kept at or below the critical 

level.  Active slip planes are considerd to be those radiating directly from the crack tip 

and the two planes that were generated in the preceding increment.  Thus some 

redistribution of plastic strain is allowed as the slip plane moves behind the crack tip. 

Dipoles and associated Burger's vectors of older slip planes become fix but still 

influence crack shape and plasticity in the two active slip planes. More information 

about how to solve this numerical problem is given in [11]. 

In this model the kinetics of crack growth are not accounted for. The real time 

dimension of crack propagation is not determined. 

 

Grain patterns and slip plane systems 
The microstructure is a randomly generated Voronoi grain pattern with uniformly 

distributed seed points. Each grain is assigned with a set of randomly oriented slip 
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directions in which plastic flow in shear is allowed. Here three directions, each 120º 

apart are assumed (see Figure 2). The slip direction of highest shear stresses is chosen in 

each grain. At each triple junction the crack kinks towards the direction of highest KI 

and does not stop until it reaches a certain crack length. 

 

 
Figure 2. Example for advancing crack in Voronoi microstructure and applied SD 

algorithm in slip planes and crack 

 

SD algorithm 
The simulation of a growing crack requires the investigation of the effect of the 

dislocations which are left behind along the crack wake, since these are responsible for 

the plasticity induced crack closure, see [7]. As the crack tip moves away from the first 

slip plane pair, its influence on dislocations in crack tip vicinity decreases. After a 

certain crack extension the interaction force between the pre-existing slip planes and the 

dislocations on the new slip planes at the crack tip is small enough to apply a SD 

approach. This gradually bundles up dislocation dipoles on old slip planes to reduce the 

size of the numerical problem, see [6], and so keep the calculation time down, see [12]. 

From simulation step 3, after the crack has grown two growth increments, further plastic 

flow in the oldest slip plane pair is no longer allowed but the effect of those dislocations 

must be retained. This is where the SD algorithm applies: 

Every two dipoles on a slip plane become one SD with a mean value of their Burger's 

vectors. This approach is used in every simulation step so that gradually more and more 

dipoles of old slip planes will be bundled up the further away from the crack the slip 

plane is located. The algorithm applies until there is only one SD left on each slip plane. 

One superdislocation is located right at the crack flank and the other one at the end of 

the plastic zone (see Figure 2). The associated Burger's vector is the mean value of all 

initial Burger's vectors of the slip plane dipoles. 

A modified SD algorithm is also applied to the crack dipoles. Once the growing 

crack moves onto a new GB, the boundary segment that has just fractured is remeshed 

to have dipoles of uniform width. When the crack advances onto a third GB the 

penultimate GB will be subject to a SD algorithm. Each position of a dislocation is 

prediscribed by the position of a slip plane. So the number of crack dipoles of one GB is 

eventually reduced to the number of emanating slip planes from that GB (see Figure 2). 
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The SD algorithm is very important to reduce calculation time when the numerical 

system becomes very complex due to a kinking and branching crack. It has been shown 

by Brandinelli and Ballarini [13] that crack growth in random media is largely 

independent of the details of the crack trajectory and that the stress intensity factors 

depend almost entirely on the geometry of the final kink in the crack path and this is 

where the highest accuracy is achieved in the model introduced in this paper. 

Comparison of SIFs calculated with and without application of the SD algorithm for a 

crack of length 400 µm obtained in 79 simulation steps gives a mean deviation of less 

than 6%. In this particular example the application of the SD algorithm saves 78% of 

calculation time. 

 

RESULTS 

 
The simulation parameters used are representative of sensitized stainless steel: Young's 

modulus E = 206 GPa, Poisson's ratio ν = 0.3, yield strength σy = 205 MPa and a initial 

remote stress yapp σσ ⋅≈ 5.0   [5,6]. The average grain size of the randomly generated 

homogeneous grain patterns is 50 µm. 

The following sections present the results of a Monte Carlo type simulation and 

statistical evaluation of crackpath, CTOD and SIFs. All results presented in this section 

are based on 20 crack trajectories as a result from conducting crack growth within 20 

different random microstructures using the simulation parameters just introduced. In 

order to get information about the standard deviation of the crack path, all crack 

trajectories were shifted in y-direction so as to initiate from (0,0). In every of the 

following diagrams one data set is highlighted which belongs to the same set of input 

parameters in order to show relations between crack path, CTOD and SIFs for one 

particular crack. 

 

Crack path and CTOD 

Figure 3 shows 20 different crack paths of length 400 µm. A crack of this length in a 

grain pattern of 50 µm average grain size fractures 16.3 GBs on average. 

As expected, the mean values fluctuate around zero while the standard deviation is 

slowly growing in a square root of crack length dependence as the crack extends (see 

red line in Figure 3). Crack initiation points are chosen randomly at the left boundary of 

the generated microstructure. This describes the very steep inclination angle of one of 

the crack paths which is not likely to occur in reality. 

The CTOD of a crack is simply the Burger’s vector of the innermost climb dipole of 

the crack. As the crack propagates, the CTOD fluctuates considerably but the mean 

value CTOD
µ
 gives a clear tendency of growth while the standard deviation grows for 

very short cracks but seems to fluctuate around a constant value later on (see Figure 4). 

To get a definite answer whether the CTOD
s
 rises or is constant for an extending crack, 

the Monte Carlo type simulations would have to be carried out for a larger maximum 

crack length. Each peak in the highlighted CTOD trajectory indicated a change of 

direction in crack growth. 
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Figure 3. Geometry of 20 crack paths 

 

 
Figure 4. CTOD 

 

SIF 
SIFs are of fundamental interest to characterise the stress state at the tip of a crack and 

to correlate with crack growth data. In this paper SIFs have been calculated fitting the 

stress field equations  

r

K II

yy
π

σ
2

=  , 
r

K IIII

xy
π

σ
2

=  

to the stress yyσ , xyσ ahead of the crack. 

The stress distribution ahead of the crack follows a r/1  behavior, with r the distance 

from the crack tip, when disregarding the region very close to the crack tip r ≤ 0.1 nm. 

This is a reasonable thing to do, because close to the crack tip the discrete nature of the 
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simulation tends to stresses that are dominated by the dislocations at the crack tip and 

do not reflect the crack as a whole. The outer limit of the fitting region is chosen at 

r = 10 µm because only in this region the stresses xyyy σσ ,  resemble the r/1  

behaviour. 

 
 

 
Figure 5. SIFs KI and KII for 20 different cracks 

 

Figure 5 shows KI and KII. 
µ

IK  grows slowly with increasing crack length while µ

IIK   

fluctuates around 0. For both KI and KII it can be seen that the standard deviation 

increases for an initiating crack but settles down to a constant value for a longer crack. 

The highlighted curves show that every change of direction of crack propagation has 

a severe influence on SIF. Whenever the crack kinks, KI and KII peak but mostly settle 

back down to a genereally increasing (for KI) or constant (for KII) distribution. There is 

a tendency for KII to be above zero for a positive crack inclination angle and below zero 

for negative angles. 
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SUMMARY 
 

We have presented a dislocation model that allows simulation of difficult and 

complex crack geometries. It is set up in a very general way and allows a crack to grow 

along any not curved GB geometry. This generic approach has a wide range of 

applications such as fatigue cracking as well as intergranular stress corrosion cracking.  

A method of reducing calculation time has been developed. Bundling dislocations up 

in SDs is an efficient way to save calculation time without a significant loss of 

accuracy. Close to the crack tip the SD algorithm does not influence the model 

accuracy. 

Calculation of SIF KI and KII is possible without difficulty and gives information 

about the stress state at the crack tip as the crack propagates through a grain pattern. 

Monte Carlo type simulations have been conducted to obtain statistical information 

about the behavior of crack paths, CTOD and SIFs. All four of the just mentioned 

simulation output parameters are closely related. Whenever a crack reaches a triple 

junction and needs to change direction, CTOD, KI and KII trajectories peak severely but 

settle down quickly as the crack propagates along the new GB. 
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