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ABSTRACT. A general method for evaluating the Stress Intensity Factors of an 
inclined edge kinked crack in a semiplane is presented. An analytical Weight Function 
with a matrix structure was derived by extending a method developed for an inclined 
edge crack. The effects of the principal geometrical parameters governing the problem 
were studied through a parametric Finite Element analysis, carried out for different 
reference loading conditions. The Weight Function can be used to produce efficient and 
accurate evaluations of the Stress Intensity Factors for cracks with initial inclination 
angle in the range -60° to +60° and kinked angle in the range from -90° to +90°. The 
agreement between the results with those obtained by accurate Finite Element solutions 
suggests that the proposed Weight Function can be used as a general tool for 
evaluating the Fracture Mechanics parameters of an inclined kinked crack. 
 
 
INTRODUCTION 
 
Fatigue cracks, in general, can start growing along a particular direction, even at an 
inclination angle relative to the remote load, for instance due to mixed-mode conditions 
[1] or anistropic crack growth resistance properties of the material characteristics [2]. 
The term ‘slanted cracks’ or ‘inclined cracks’ is frequently used to describe these 
cracks. Furthermore, it is common practice that fatigue cracks can deviate from their 
original trajectory, for istance due to the variation of the loading direction during the 
service life [2] or during fast brittle fracture or subcritical crack growth under mixed-
mode loading [3]. Such cracks have been termed as ‘deflected cracks’ or ‘kinked 
cracks’. 

The fatigue life assessment of structural components requires not only precise crack 
growth estimation but also the prediction of the fatigue crack trajectory. In fact, the 
crack path can determine whether fatigue failure is benign or catastrophic. As reviewed 
by Socie and Marquis [4], the study of crack paths has received increasing attention in 
recent years, leading to the formulation of various models predicting critical plane for 
crack propagation. All the proposed approaches may be expressed as a function of the 
stress intensity factor (SIF) components ahead the crack tip [5]. 
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The Weight Function (WF) method turns out to be particularly efficient for solving 
this kind of problems, where a lot of SIFs calculations have to be performed under 
general remote loading of the cracked body. In fact, being based on the general 
properties of the cracked body geometry, the WF method enables an efficient and direct 
SIF calculation for complex loading conditions, allowing to account for loading 
variations during fatigue cycles, and giving an efficient prediction of the crack 
evolution. Moreover, the WF method can be adopted for evaluating also the crack 
opening displacement (COD) that is a fundamental quantity for predicting possible 
crack closure during the loading cycle. 

The problem of the oblique edge crack in an unnotched and notched semiplane was 
already faced by the Authors [6, 7] and the related WF was obtained for evaluating KI 
and KII SIF components. It was demonstrated that, when the crack is not perpendicular 
to the surface, a matrix structure is necessary to define the WF in order to account for 
the lack of symmetry. Starting from this WF, the Green Function (GF) was also 
determined [8], which allowed the COD evaluation by direct integration of the tractions 
applied to the crack faces. It was demonstrated that, by a simple analysis in the one-
dimensional domain of the crack length including nominal and contact stresses, the WF 
and the GF give an accurate and efficient fracture mechanics solution under a 
completely general loading producing also partial closure. Numerical solutions of the 
SIFs of a kinked crack are available in the literature [9], a WF function for kinked 
cracks starting from an edge crack orthogonal to the surface has been derived by [10], 
however a WF for an inclined kinked edge crack has not been proposed yet. 

In the present paper, an inclined kinked edge cracks in an elastic semi-plane is 
analyzed. The aim is to develop an efficient and accurate analytical WF by which the 
SIF components can be calculated by a simple integration for crack lengths and 
inclinations before and after kinking within broad ranges, covering the typical 
conditions of practical interest. To this purpose, an extensive parametric finite element 
analysis has been performed, by varying the geometrical parameters for different 
reference loading conditions, in order to build up a database of SIFs values. These 
results have been used to obtain the properties of a parametric WF. The WF was 
validated by comparing the SIFs with the results of FE analyses carried out for loading 
conditions different from those used in the database definition as well as with solutions 
found in the literature. 
 
 
PROBLEM DEFINITION AND WEIGHT FUNCTION FORMULATION 
 
The geometry of the problem is schematically illustrated in Fig. 1, where a kinked 
inclined edge crack in a semiplane is shown. The geometrical parameters governing the 
problem are: the initial crack length a0 and inclination angle α with respect to the 
semiplane bisector, the kinked crack length a and inclination β with respect to the initial 
crack direction. For an oblique crack (not symmetrical problem), the WF has a matrix 
structure [6-8]: 
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In the present case, the crack is composed by two straight lines, thereofore the SIFs 
components can be obtained by splitting the integration of the WF and stress 
components into two parts: 
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where 
  
d
!
!  is the curvilinear coordinate along the crack path,  hMµ  and  hMµ  (with M = I 

or II and µ = σ or τ)  represent the WF components, while 
 
!

M
, 

 
!

M
 and 

 
!

K
, 

 
!

K
 are the 

normal and shear nominal stress distributions acting on the main and on the kinked 
crack, respectively. The nominal stress is usually defined as the stress acting along the 
segment of the crack location in the equivalent uncracked body, subjected to the same 
constraint and loading conditions of the cracked body. 

 
Figure 1. Schematic representation of the problem. 

 
The diagonal WF components hIσ and hIIτ represent the direct effect, i.e. the 

contribution on KI  produced by !  and the contribution on KII  produced by !  
respectively, while the off-diagonal components hIIσ and hIτ represent the coupling 
effect, i.e. the contribution on KII produced by !  and on KI by !  respectively. When 
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the edge crack lays on the symmetry axis (crack inclination angle θ = 0°), the off-
diagonal terms vanish and no coupling effects are expected either between shear 
nominal stress and KI or between normal stress and KII. 

As formally indicated in Eqs. (2), the WF components depends on the x and X 
positions and on the parameters characterising the crack geometry. From Eqs. (2) it can 
be deduced that the physical dimension of the WF components is [length]-1/2. As 
characteristic length the total crack length a+a0 is assumed. In order to simplify the 
analysis, WF has been assumed to be a function the dimensionless parameter a/a0. As a 
consequence, any WF component can be simplified as follows: 
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where ξ, 
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parameters the angles !  and ! . By adopting the formulation proposed in [6], suitable 
for reproducing the asymptotical properties when x → a, the following expressions were 
assumed, in the case of Mµ = Iσ or IIτ: 
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and in the case Mµ = IIσ  or  Iτ: 
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As shown in the following sections, a reasonable approximation of the scalar 
functions 

 
B

k

Mµ  can be obtained by a mixed analytical-numerical technique based on the 
results of a parametrical FE analysis carried out for at least two independent loading 
conditions.  
 
 
FINITE ELEMENT ANALYSIS 
 
The finite element models were developed by using the ANSYS® 11 code and built up 
with eight node plane strain iso-parametric elements (PLANE82). In order to simulate a 
virtually semi-infinite body, the global dimension of the model was set equal to 
1000(a+a0). Two independent loading conditions are necessary for building up the SIF 
database to be used in the numerical evaluation of the WF. The adopted loading 
conditions are shown in figure 2: normal uniform traction at infinite (fig. 2a) and pure 
shear at infinite (fig. 2b). The remote linearly variable normal traction  (fig. 2 c) was 
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also considered in order to validate of the WF under loading conditions different from 
those used for the evaluation. 

 
Figure 2. Reference loading conditions: a) uniform remote normal load, b) uniform 

shear load c) linearly variable remote normal load 
 

Parametric FE analysis of the uncracked semi-plane was carried out for obtaining the 
nominal stress distribution !  and !  along the virtual crack path. For any loading 
conditions, the whole stress field along the virtual crack path was stored and the 
nominal stress components !  and !  calculated for any angle α and β by applying the 
rules of rotation of the stress tensor from the global reference system X’-Y’ to the local 
systems X-Y and x-y as shown in Fig. 1. On this basis, in the local reference systems X-Y 
and x-y, the FE stresses were least-square fitted by using a linear polynomial function. 

The same FE model was then modified in order to introduce an oblique kinked edge 
crack. The stress singularity at the crack tip was modelled by a radial arrangement of 
quarter-point elements, that allow for an appropriate representation of the local 
asymptotic displacement field ( 1/ 2

r ) at the crack tip (Fig. 3). 
In order to check the accuracy of the cracked FE models, a couple of reference crack 

configurations for which KI and KII are known were considered: the embedded Griffith 
crack and the edge crack normal to the external surface [11, 12]. The FE model was 
adapted to represent these conditions by assuming α = 0° and β = 0° and by slightly 
modifying the boundary conditions. In the case of the Griffith crack, symmetry or anti-
symmetry constraints on the free surface of the original model were introduced, 
according to the remote normal and shear loading. The mesh was refined up to a level 
that produced a relative difference lower than 0.05% between the FE and the analytical 
SIF values. Additional comparisons were made with reference crack configurations 
available in the literature: the inclined edge crack [13] and the edge crack normal to the 
external surface and deflected [9, 10]. In the former case, the relative difference was 
lower than 0.1%, in the latter a maximum relative difference of about 4% was found 
with respect to the solutions reported in [10] and of about 2 % in comparison with [9]. 
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FE analyses were conducted with cracks having initial inclination α in the range 0° ≤ 
α  ≤ 60° with a step of 10°. The obtained results were extended to the interval -60° ≤ α  ≤ 
60°, by appropriately distinguishing between symmetric and anti-symmetric loadings. 
The crack deflection angle β was considered in the range -90°≤ β  ≤ 90° with a step of 
10°. The explored values of the ratio a/a0 ranged between 1/300 and 1/10 (8 values 
tested). The total number of different crack configurations studied was 1064, each one 
giving a couple of KI and KII values. 

 
Figure 3. Finite element model of the semiplane carrying an edge inclined kinked crack. 
 
 
EVALUATION OF THE WEIGHT FUNCTION 
 

By considering the nominal stresses calculated by least-square fitting the FE stresses 
and the WF expressed by Eqs. (3) and (4), a linear equations system with unknowns 

 
B

k

Mµ  can be written for each SIF calculated by FE. The large number of crack 
configurations allows for obtaining an over-conditioned linear system in which the 
coefficients 
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k

Mµ  are the unknowns. The Normal Equation Method can be used to 

solve the system thus obtaining the coefficients 
 
B

k

Mµ , which reproduce the FEM SIF 
values at best in the least-square sense. A reasonable compromise between the number 
of unknowns and the accuracy of SIF reproduction was found by assuming n = 1 in Eqs. 
(4). The values of the 

 
B

k

Mµ  coefficients, obtained for the different a/a0 ratios, were then 
interpolated using a VI degree Chebishev polynomial series [14], function of the angles 
α and β. Figure 4 exemplarily reports the values and the interpolated surfaces of the 
four 
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Mµ coefficients for a/a0 ratio equal to 0.1 and a crack length a0 of 100 mm. The 

values of the 
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Mµ  as well as Chebishev polynomial coefficients are not reported here 
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for the sake of coincision but can be requested from the Authors. An independent 
verification of the WF was finally obtained by comparing the SIFs calculated with the 
WF with those of the FE analysis, for the (c) loading condition shown in Fig. 2. 

   

   
Figure 4. Plot of the coefficients 

  
B

1

Mµ  of the WF for a/a0 ratio equal to 0.1 and a crack 
length a0 of 100 mm. The point data were interpolated with Chebishev polynomial 

series. (a) 
  
B

1

I! , (b) 
  
B

1

I! , (c) 
  
B
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II! , (d) 
  
B
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II! . 
 

    
Figure 5. Relative differences between FE and WF solutions of KI and KII for the 

loading case (c). 
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Fig. 5 and b display the relative differences between FE and WF solutions of KI and 

KII according to the following expression: 
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The zones marked in grey in Fig. 5, where the relative difference exceeds 7%, 
correspond to SIF value lower than one 100th of the maximum SIF value. In conclusion, 
it should be emphasized that, for the edge kinked crack, the obtained WF produces SIF 
values with an average error lower than 1%. 
 
 
CONCLUSIONS 
 
An analytical WF with a matrix structure was proposed for determining the Stress 
Intensity Factors of an edge kinked crack in a semiplane. A parametric FE analysis was 
performed to build up a database of KI and KII for a relatively broad range of the 
geometrical parameters governing the problem. The calculated KI and KII values were 
used for obtaining the WF by means of a least-square fitting procedure. The obtained 
WF reproduced the FE results with typical relative differences in the order of 1%. 
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