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ABSTRACT. Fatigue crack growth tests were performed under various mixed-mode 
loading paths, on a maraging steel. The effective loading paths were computed by finite 
element simulations, in which asperity-induced closure and friction were modelled. 
Application of fatigue criteria for tension or shear-dominated failure after elastic-
plastic computations of stresses and strains, ahead of the crack tip, yielded predictions 
of the crack paths, assuming that the crack would propagate in the direction which 
would maximise its growth rate. This approach appears successful in most cases. 
 
 
INTRODUCTION  
 
Under non-proportional cyclic loading, the stress or strain ranges are not sufficient to 
model the multiaxial cyclic behaviour of metals. Additional parameters -describing the 
loading path- have to be introduced into constitutive equations to capture extra-
hardening effects. Concerning fatigue crack growth under non-proportional mixed-
mode, a similar question arises: are ∆K I, ∆K II sufficient to predict crack paths and 
growth rates? Does the loading path have an intrinsic influence, or can all this influence 
be captured through appropriate corrections for closure and friction effects on stress 
intensity factors? 

To investigate this question, crack growth tests were performed under various mixed-
mode loading paths, to compare the crack paths. Elastic and elastic-plastic finite 
element (FE) simulations -in which asperity-induced closure and friction are modelled- 
were used to analyze the influence of the loading path and predict the crack path. 
 
 
EXPERIMENTS 
 
Procedures 
The material investigated is a maraging steel, for which kinetic data concerning mode II 
fatigue crack growth is available from a previous study [1]. It has a very high yield 
stress (Rp0.2≈1720Mpa) but very low hardening capacity (Rm/Rp0.2≈1.03) and limited 
ductility (around 8%). Tubular specimens (10.8mm and 9mm outer and inner diameters) 
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were used for push-pull, reversed torsion and reversed torsion plus static tension tests, 
in order to fit constitutive equations and two fatigue criteria: one for shear-dominated 
failure –which occurred systematically in torsion- (Findley’s criterion [2]) and one for 
tension-dominated failure which occurred in push-pull (Smith, Watson and Topper’s 
criterion [3]). This preliminary part of the study is reported in appendix. 
 

Table 1: Test conditions, observed and predicted crack paths 

 
Some tubular specimens had a circular hole (370µm in diameter) from which a 1 to 

1.5mm-long transverse precrack was grown in mode I. The precracked specimens were 
submitted to tension and torsion cyclic loadings, following various loading paths (Table 
1). Loading E and F, which both appear as truncated ellipses in KI-K II plane, correspond 
to 90° out-of-phase tension and shear, but in the first case, loading is fully reversed, 
while in the second case, only shear-mode loading is reversed, but R=0 for mode I.  

 
Nominal and effective loading paths  
K I

nominal, K II
nominal were computed for a crack emanating from a hole in a infinite plate, 

but corrections were applied to take into account the influence of the curvature of the 
tube wall, which, according to Erdogan and Ratwani increases as the crack grows [4]. 
Finite element simulations of applied loadings were performed with rough crack faces 
(Figure 1), taking into account the contact and friction of the asperities. A sine wave 
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profile with amplitude h -ranging from 5 to 20µm- and period p -around 180µm- was 
assumed, which is simplified, but reasonable compared to observed precrack profiles. 
The effective stress intensity factors, KI

effective, KII
effective, were computed at each time 

step (by analysis of crack faces displacements). Plasticity-induced closure –probably 
limited in such a high strength steel- was not taken into account.  

 
Figure 1: Finite element model for the computation of effective loading paths. a) mesh 

and boundary conditions, b) and c) deformed mesh for two levels of applied shear. 

Figure 2: Computed evolutions of effective stress intensity factors for loading B and D. 
 
As an example, figure 2 shows the evolutions in time of effective stress intensity 

factors computed for loading B and D, with h=10µm and friction coefficient µ=1. 
Figure 3 shows the mutual influence of each mode on the effective stress intensity 
factor of the other mode for ∆K I=10Mpa√m and ∆K II=20Mpa√m. Important asperity-
induced closure - increasing with KII- was found for cyclic mode I plus static mode II. 
Closure effect were found less important for mixed-mode plus static mode I and absent 
for all other investigated loading paths. A static mode I or a cyclic, 90° out-of-phase 
mode I, were found to reduce crack tip shielding from mode II loading by crack faces 
interactions, compared to pure mode II, while in-phase mode I cyclic loading, with R=-

a) b)

c)

a) b)

c)

0

2

4

6

8

10

0 50 100 150

K
Ief

fe
ct

iv
e

 (M
P

a√
m

) KII = 5
KII = 10
KII = 15

Time step
-10

-5

0

5

10

20 60 100 140 180

time step

K
Ief

fe
ct

iv
e
, K

II
ef

fe
ct

iv
e (

M
P

a√
m

)

KI

KII

Time step

Loading B
Loading D

0

2

4

6

8

10

0 50 100 150

K
Ief

fe
ct

iv
e

 (M
P

a√
m

) KII = 5
KII = 10
KII = 15

Time step
-10

-5

0

5

10

20 60 100 140 180

time step

K
Ief

fe
ct

iv
e
, K

II
ef

fe
ct

iv
e (

M
P

a√
m

)

KI

KII

Time step

0

2

4

6

8

10

0 50 100 150

K
Ief

fe
ct

iv
e

 (M
P

a√
m

) KII = 5
KII = 10
KII = 15

Time step

0

2

4

6

8

10

0 50 100 150

K
Ief

fe
ct

iv
e

 (M
P

a√
m

) KII = 5
KII = 10
KII = 15

Time step
-10

-5

0

5

10

20 60 100 140 180

time step

K
Ief

fe
ct

iv
e
, K

II
ef

fe
ct

iv
e (

M
P

a√
m

)

KI

KII

Time step

Loading B
Loading D

409



1 was found to enhance it. Very limited influence of mode I on ∆K II
effective was found 

here for sequential loading, but simulations performed for 
∆K I=15Mpa√m, ∆K II=20Mpa√m for a much softer ferritic-pearlitic steel in a previous 
study [5] have shown that for such loading, the residual crack tip opening increases 
from cycle to cycle. This effect, which would probably be observed in maraging steel at 
higher ∆K I is likely to reduce crack faces interference and increase ∆K II

effective.  
Note that for similar nominal loading ranges, ∆K I=10Mpa√m and ∆K II=20Mpa√m, 

variations in the loading path lead to variations in ∆K I
effective from 7.9 to 10Mpa√m and 

in ∆K II
effective from 11.1 to 20Mpa√m! Such differences in effective loading can produce 

differences in crack paths and growth rates. 

Figure 3: Mutual influence of mode I and mode II on the effective fraction of ∆K of 
the other mode (h=10µm, p=180µm) a) ∆KII=20MPa√m and b) ∆KI=10MPa√m. 

Figure 4: crack paths for a) sequential mixed-mode loading (C1) b) in-phase mixed-
mode + static mode I (D) c) fully reversed 90° out-of-phase mixed-mode (F). 
 

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14 16

D
K

IIe
ff

/D
K

IIn
om

90° out-of-phase
mixed-mode + static mode I
reversed mixed-mode
sequence
Mode II + static mode I

∆KI
nominal (MPa√m)

∆K
II

e
ffe

ct
iv

e / 
∆K

II
n

o
m

in
al

a)

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30

mixed-mode + static mode I

reversed mixed-mode or 90° out of phase

mode I + static mode II

∆KII
nominal (MPa√m)

∆K
Ie

ffe
ct

iv
e / 

∆K
In

o
m

in
a

l

b)

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14 16

D
K

IIe
ff

/D
K

IIn
om

90° out-of-phase
mixed-mode + static mode I
reversed mixed-mode
sequence
Mode II + static mode I

∆KI
nominal (MPa√m)

∆K
II

e
ffe

ct
iv

e / 
∆K

II
n

o
m

in
al

a)

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14 16

D
K

IIe
ff

/D
K

IIn
om

90° out-of-phase
mixed-mode + static mode I
reversed mixed-mode
sequence
Mode II + static mode I

∆KI
nominal (MPa√m)

∆K
II

e
ffe

ct
iv

e / 
∆K

II
n

o
m

in
al

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14 16

D
K

IIe
ff

/D
K

IIn
om

90° out-of-phase
mixed-mode + static mode I
reversed mixed-mode
sequence
Mode II + static mode I

∆KI
nominal (MPa√m)

∆K
II

e
ffe

ct
iv

e / 
∆K

II
n

o
m

in
al

a)

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30

mixed-mode + static mode I

reversed mixed-mode or 90° out of phase

mode I + static mode II

∆KII
nominal (MPa√m)

∆K
Ie

ffe
ct

iv
e / 

∆K
In

o
m

in
a

l

b)

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30

mixed-mode + static mode I

reversed mixed-mode or 90° out of phase

mode I + static mode II

∆KII
nominal (MPa√m)

∆K
Ie

ffe
ct

iv
e / 

∆K
In

o
m

in
a

l

b)

410



Observed crack paths 
Table 1 summarises the observations, concerning the crack paths. Pictures of crack 
paths after loading C1, D and F are shown on figure 4. Crack growth was nearly 
coplanar for sequential loading C1 and C2. The slight deflections observed during the final 
blocks of these tests seem not to be due to the applied mixed-mode, but to incipient 
shear-lips, due to the relatively high ∆K I. Loading D (in phase mixed-mode plus static 
mode I) lead to 80µm coplanar crack growth, followed by bifurcation at 30°. Coplanar 
crack growth was observed, during the first and second block of fully reversed, 90° out-
of-phase loading F. Bifurcation at 50° occurred during the third block. A large quantity 
of fretting debris appeared along the rough precrack, but much less along the smoother 
coplanar crack part, grown in mixed-mode. By contrast, only coplanar crack growth was 
observed for path E (also 90° out-of-phase, but R=0 for mode I). Much less fretting 
debris was formed and the fracture surfaces were not mated, contrary to the previous 
case. This might partly be due to a smoother precrack, but mainly to the absence of 
compressive loading while shearing is being applied. 
 
 
ANALYSIS 
 
Elastic-plastic FE simulations of applied loadings were performed for rough crack faces, 
using constitutive equations with isotropic and non-linear kinematic hardening fitted to 
measured stress-strain curves. Findley’s damage function was computed ahead of the 
crack tip and averaged along the radial segment of length l (l=20µm in the computations 
reported below) for which the shear stress range was maximum, whereas for the 
computation and averaging of Smith-Watson-Topper’s damage function, two choices of 
critical plane were envisaged: the planes along which either the peak normal stress, 
σnmax, or the normal stress range ∆σn were maximum. These two cases, which can yield 
very different predictions, as shown below, will be denoted by SWTa and SWTb. These 
two potential growth directions were envisaged by Hourlier et al [6] and Dahlin and 
Olsson [7]. The former concluded that the direction of maximum ∆σn was more suitable 
for alloys showing a limited influence of the R ratio on their mode I kinetics, which is 
the case of the maraging steel investigated here. The latter concluded that the direction 
of maximum σnmax should be preferred for high-strength metals with limited ductility, 
which is also the case of the maraging steel investigated here!  

The analysis of the crack path for cyclic mode I + static mode II (test B) is very 
useful to solve that dilemma. For these loading conditions, the peak σnmax occurs at 62° 
while the maximum ∆σn is at 0°, whatever the static mode II. Since no bifurcation 
occurred, the crack followed the maximum ∆σn plane. SWTb criterion was thus used for 
tension-dominated failure and Findley’s criterion, for shear-dominated failure. 

The potential numbers of cycles to fracture Nf (l) are computed, using the analytical 
relations between damage functions and fatigue lives, fitted to experimental data on 
smooth specimens (see appendix). The crack is supposed to grow in the direction where 
failure – be it tension or shear-dominated- occurs first or, in other words, in the 
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direction where its growth rate is maximum. This generalises the idea of Hourlier et al 
[6] who promoted it, under the restrictive assumption that mode I would necessary 
prevail. The potential growth rates in corresponding directions are then estimated as: 

 

( )lN

l

dN

da

f

≈       (1) 

Prediction of crack path and growth rate in fully reversed mode II 
Figure 5 compares the potential crack growth rate in fully reversed mode II predicted by 
Findley’s criterion and that of a branch crack, in mode I, according to SWTb for various 
amplitudes. These computations were performed for a smooth, frictionless crack. 
Coplanar growth is predicted for ∆K II

effective higher than 15Mpa√m, which is consistent 
with the threshold found by Pinna [1]. The predicted mode II crack growth rate is 
correct above 25Mpa√m, but a bit too small below that value. This can be improved by 
introducing a damage cumulation, to take into account the smaller cycles before the 
crack tip touches the element whose fatigue life is computed. This will be reported 
elsewhere, for lack of space.  
 
 
 
 
 
 
 
 
 
 

Figure 5: Potential crack growth rate in reversed mode II predicted by Findley’s 
criterion and that of a branch crack, in mode I, according to SWTb. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Influence of crack roughness and friction coefficient on  

a) ∆KI
effective and b) ∆KII

effective in reversed mode II. 
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Simulations of reversed mode II were performed for a rough crack, with h=5, 10 and 
15µm and friction coefficients, µ, between 0 and 1 (Figure 6). The higher µ, the smaller 
∆K II

effective. Mode I induced by asperities is predicted to increase and ∆K II
effective to 

decrease with h, so that for ∆K II=20Mpa√m, coplanar growth is predicted for h=5 and 
10µm, whatever the friction coefficient, and for h=20µm, only if µ is smaller than 0.44, 
while bifurcation is predicted above this value. Slight changes in crack roughness or 
tribological conditions are thus likely to change the crack paths. Mode II crack growth 
is favoured by smooth crack faces and a low friction coefficient.  

 
Prediction of crack paths in non-proportionnal mixed-mode 
The predicted crack paths for mixed-mode loadings A to F reported in Table 1 were 
obtained for h=10µm and µ =1. In most cases, it is in agreement with the observed crack 
paths, but some discrepancies exist. The final bifurcation at 30°, observed after coplanar 
growth during test D and the bifurcation at 50° during the last block of tests F are not 
predicted. Since it proved difficult to control at the same time the symmetry of 
precracking on each side of the hole, the final length of precracks and their roughness, 
differences from specimen to specimen might be responsible for the few mispredictions, 
not to mention three-dimensional aspects that will be addressed in a next step. 
 
 
CONCLUSIONS 
 
Finite element simulations of crack faces interactions show that for fixed nominal 
loading ranges, variations in the loading path, crack roughness or friction coefficient 
induce important variations in ∆K I

effective and ∆K II
effective likely to change the crack path. 

An approach based on elastic-plastic FE computations and local application of fatigue 
criteria was developed to analyze the crack paths observed during mixed-mode 
experiments on a maraging steel. The predictions were successful in most cases. 
 
 
APPENDIX: Fit of fatigue criteria 
 
Tension-dominated failure which occurs in push-pull can be predicted with Smith, 
Watson and Topper’s criterion [3] in which the damage parameter is  
 

maxnσεβ nSWT ∆=      (A1)  

     Figure A1a shows the measured fatigue lives in push-pull or repeated tension as a 
function of βSWT. An exponential law was fitted and used for crack growth predictions. 

Shear-initiated decohesion along a slip band in fatigue occurs earlier when an 
opening stress is present. Findley [2] took this effect into account in a crack initiation 
criterion where the damage function: 
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max    nFind kστβ +∆=      (A2) 

incorporates the peak opening stress σnmax, computed along the facet which undergoes 
the maximum shear stress range, ∆τ. Figure A1b shows the measured fatigue lives in 
reversed torsion with various static tensile stresses as a function of βSWT in which k=0.2 
gave the best correlation. There again an exponential fit was obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A1: Fit of a) Smith, Watson and Topper’s fatigue criterion from tensile fatigue 

data and b) Findley’s criterion from reversed torsion + static tension data. 
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