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ABSTRACT. Homogenization theories for periodic microstructures are introduced to 
investigate the crack initiation and propagation behaviours of the TP-650 titanium 
matrix composites. By adopting homogenization theories for periodical microstructures, 
the macroscopic material parameters are identified by solving the microscopic 
equations. A new fixed point iteration method for multi-particle unit cell’s boundary 
conditions of the microstructures is presented. The real displacement constrained 
conditions are obtained and applied to the multi-particle unit cell with this method. 
Finite element (FE) models containing some microstructure characteristics of the TP-
650 composite are established and their fracture behaviors of the composites under 
tensile loading are simulated.  
 
 
INTRODUCTION   
 
The development of metal matrix composites (MMCs) has been one of the major 
innovations in materials engineering. MMCs are widely considered for structural 
applications where potential weight-savings can be realized by using light-weight 
matrices strengthened with strong ceramic phases. Titanium carbide (TiC)-reinforced 
titanium matrix composites are particularly attractive because of combination of the 
metallic properties of matrices with the ceramic properties of TiC leading to a 
composite material with higher modulus, strength, wear resistance, and thermal stability 
[1-3]. 

One of the interesting characteristics of these composites is being able to retain good 
mechanical properties at rather high temperatures. Common titanium alloys can 
generally be used at temperatures up to about 500 ; higher temperatures can only be 
tolerated by 

0C
β  titanium alloys containing tailored alloying elements. For serving 

temperature of the titanium alloys, TiC/TiB is added to improve the mechanical 
properties, because of their high modulus, high thermal stability and similar density to 
titanium. For this reason, the Ti/ceramic-particles composites are far advantageous over 
the aluminium-based MMCs, provided that no detrimental reactions occur between the 
matrix and ceramic at high temperatures [4].  
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Northwest Institute for Non-Ferrous Metal Research has recently developed a pre-
treatment melt process (PTMP) to manufacture TiC particulate-reinforced composites 
TP-650 [5-7]. Johnson et al. [8] examined the compressive behaviour at room 
temperature of Ti-6Al-4V/Tic composites and found that the dominant mechanism of 
the composites was due to carbon in solid solution. Baroza et al.[9] investigated the 
creep behaviour of the conventional Ti-6Al-4V alloy under constant load tensile tests 
and reported that the higher resistance of Tic-6Al-4V could be attributed to α β  
interfaces acting as obstacles to dislocation motion and to the average grain size. 

With fast development of computers, numerical simulations have been gradually 
accepted by scientists worldwide [10-14]. Preferred over physical experiments, 
numerical simulations draw more attraction due to their low cost, easy setting of 
parameters, and high repeatability. Leon and Mishnaevsky [15] performed 3D finite 
element simulations of the deformation and damage evolution of SiC particle reinforced 
Al composites for different microstructures and reported that the strain hardening 
coefficient increases with varying the particle arrangement in the following order: 
gradient<random< clustered<regular microstructure and the variations of the particle 
sizes led to strong decrease in the strain hardening rate of the composite. Drabek and  

 [16] presented a 3D micromechanical finite element method of metal matrix 
composites to multi-particle and multi-fiber unit cells and discussed the effects of 
microgeometrical parameters on the mechanical response. Bo et al. [17] employed a 
multi-inclusion unit cell models to study the effects of the reinforcements types and 
shapes and analyzed the predicted microfields in terms of their phase averages and the 
corresponding standard deviations. 

Bohm
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In the current study, homogenization theories for periodic microstructures are 
introduced to investigate the crack initiation and propagation behaviors of the TP-650 
titanium matrix composites. Based on the fixed point iteration method, the boundary 
conditions for the microstructures are calculated. After identifying the real displacement 
constrained conditions for multi-particle unit cell model of the microstructures, finite 
element (FE) models containing important microstructure characteristics of the TP-650 
titanium matrix composites are established and the crack initiation and propagation 
processes of the composites under tensile loading are simulated.  
 
 
HOMOGENIZATIN THEORY FOR PERIODIC MICROSTRUCUTRES 
 
The mechanical characteristics of materials with periodic microstructures change 
smoothly with macroscopic scale x , while the mechanical properties generally possess a 
high oscillation in a close vicinity of x [18-21]. Thus, two scales were taken into 
account: macroscopic scale x  and microscopic scale y . ε  is then introduced to 
indicate the x y ratios. That is,  
 

/y x ε=                                                                (1) 
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Expanding the structure displacement  as an asymptotic series of a small 
parameter 

( )u xε

ε  
 

                                        (2) 0 1 2 2( ) ( , ) ( , ) ( , )u x u x y u x y u x yε ε ε= + + +
 

Substitute Eq.2 into a virtual work equation 
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where  and  are the real e virtual displacements, respectively. f is the body force 
applied on the open subset Ω  with a smooth boundary on 

εu v
Γ  comprising (where 

displacements are prescribed) and 
dΓ

tΓ (the traction boundary), and are the tractions. t p
Then, we have： 
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where H

ijklE  is the effective elastic tensor that is defined by Eq.5 
 

1 kl
H m
ijkl ijkl ijmnY

n

E E E
Y y

∂
= −
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χ dY                                              (5) 

 
where is the periodic solution of the following homogenization equation: kl

mχ
 

0,
kl

i m i
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i n j

v vE dY E dY
y y y

ν∂ ∂ ∂
= =

∂ ∂ ∂∫ ∫
χ V∀ ∈                                 (6) 

 
where  is the period. Eqs.5 and 6 present the macroscopic and microscopic 
homogenization problems, respectively. By solving the microscopic ones, the 
macroscopic material parameters can be calculated, whereas the microscopic boundary 
conditions can be identified from the macroscopic ones.  

Y

 
 
FIXED POINT ITERATION AND FINITE ELEMENT ANALYSIS 

 

The solution of the effective mechanical parameters of composites with periodic 
microstructures can be used to solve the nonlinear functional equation 
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( ), , , , 0f uξ ξ ξΦ =m p . ξm  and ξp  are the mechanical parameters of the matrix and 

reinforcement, respectively. ξ  is the effective mechanical parameter of the composite. 
The solution for ( ), , , , 0f uξ ξ ξΦ m p = is known to exit and has a single value. According 
to the Banach fixed point theorem[22], the fixed point ξ  can be calculated by repeated 

iteration, only if an initial value 0ξ  and a compression mapping are found on the basis 
of .  ( ), , , , 0f uξ ξ ξΦ =m p

The microstructure of composites is assumed as a periodic and repeating array of a 
heterogeneous unit cell. In Fig.1, a macroscopic homogeneous model was established 
by assuming mξξ =0 . The freedom of the left end of the model is constrained, and to the 
right end, uniform tensile loading is applied. An area having the same size of a unit cell 
is subsequently chosen. The displacement values of all the nodes of the boundary in the 
area are identified from the calculation results. In Fig.2, a multi-particle unit cell model 
is established by applying the displacement values on the corresponding nodes. The 
displacement boundary conditions for the other nodes are identified by the linear 
interpolation of the known nodes. The next step is to solve the boundary values. The 
effective mechanical parameter 1ξ  can be calculated on the basis of the ee εσ − curve 
plotted by the numerical results. Then, another macroscopic homogeneous model is 
established by using 1ξ , and the rest may be deduced by analogy until εξξ ≤−+ n1n (ε is a 
negligible value). nξ  is the solution when ( ) 0,,,, 21 =Φ ξξξ uf  and is also the effective 
mechanical parameter of the composites. The boundary condition nΓ  presents the real 
boundariy movement of the unit cell in the composite under sinple tension. 
 

 

 

 
  

Fig.1 Schematic of the homogenous material 

model 

Fig.2 A finite element model of a 

multi-particle unit cell 
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Material models and material parameters 
 
LS-DYNA, an explicit finite element program developed by Livermore Software 
Technology Corporation is adopted in this section to investigate the fracture behavior of 
TP-650 titanium matrix composites. A plastic kinematic material model and an 
elastic model are used to simulate the matrix and the reinforcement, respectively.  
Plane162, a 2D and 4 nodes solid element provided by LS-Dyna, is used in present 
numerical simulations.Table.1 lists the mechanical parameters of the particle and 
matrix. 

 
 

Table.1 Mechanical parameters of TiC and titanium alloy matrix 
 

Material TiC particle T650 matrix 
ρ / g/cm3 4.43 4.51 
E /GPa 460 108 
ν 0.188 0.35 

σs/MPa  1095 
Et /GPa  6e-2 

C/s-1  1832.6 
P  2.3 

 

Micro-crack initiation and propagation of theTP-650 composites 
 
A multi-particle unit cell model of TP-650 composites is established. The 
model contains 36 particles with the size of  and the volume fraction of the 
composite is 3%. In order to simply numerical simulations, the interfaces 
between the TiCp and the matrix are considered to be perfect. Then, the 
displacement values obtained from the iteration process are applied on the finite 
element model with 36 particles. It can be seen from Fig.3 that there is no 
damage in the model at t 3  and the maximum stress occurred at the bottom 
of the model.  

5μm

μs=

Fig.4 shows the stress-time history curve. Seen from this figure, it can be observed 
that: 
(1) 0～ ，the stress increases rapidly with a high rate of slope and the maximum 
value is about 1.1GPa. 

8μs

(2) 9～14 ，the stress increase slowly. The reason  is that some micro-cracks occured 
in this stage, while these miro-cracks exert no obvious influence on the bearing ability . 

μs

(3) 15～ ，the stress begin to reduce. In this stage, the microcracks propagte 
quickly and connect with each other causing the rapid reduction  of the stress peak vlues. 

39μs
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Figure. 3 Stress distribution  in multi-
particle unit cell model at  t 3μs=

Figure.4 Stress-time history curve 

 
 
Fig.5 demonstrates the crack initaion and propagation behavior of the TP-650 

composites in a multi-particle unit cell model for the load case of macroscopic uniaxial 
tensile loading in the horizontal direction. First, a crack can be clearly found at the right 
corner near the bottom of the model  and then another crack initiates and propagates 
throughout the matrix, while the first one grows slowly. It is found that the crack goes 
around a particle at the right corner of the top and spreads through the matrix. As the 
loading time increases, a few other cracks occur in the left side of the unit cell, some of 
them being mutually connected, which results in the failure of the material.  
 

  

t 17μs=  t 22μs=  

  

t 33μs=  t 38μs=  

Figure.5 Predicted progress of a crack in a multi-particle unit cell of TP-650 
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Figure. 6 Stress distribution  in multi-particle unit cell model at  t 29μs=
 

 
Fig.6 shows the stress field of  the model at t 29μs= . Seen from this figure, it can 

be observed that the stress in the vicinity of micro-crack areas begin to unload and 
possess a lower value, while the stress in the areas with no microcracks presnents a 
higher value.  With the crack propagation, the stress field will be redistributed. 

From the above numerical simulations, the crack initaion and propagation behavior 
of TP-650 titanium matrix composites are complicated because of the interactions 
among the particles, especially the stress redistribution caused by the crack propagation. 
 
 
CONCLUSIONS 
 

Homogenization theories are introduced to study the relationship of microstructure 
parameters with the mechanical response of TP-650 titanium matrix composites. A new 
fixed point iteration method is presented to provide boundary conditions for the 
mcirostructures. Finite element (FE) models of a multi-particle unit cell are established. 
A series of cases are performed to explore the fracture characteristics of the composites 
under tensile loading are simulated. The particle is found to have certain influences over 
the micro-crack propagation.  
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