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ABSTRACT. The non-linear behaviour of reinforced concrete structures strongly 
depends on abrupt cracking phenomena. The crack pattern prediction is fundamental to 
the reliable assessment of the structure, both at the service and at the ultimate limit 
states. The Non-linear Finite Element (NLFE) analysis is the common tool to perform 
these verifications. Unfortunately, the constitutive models for RC material are 
characterized by softening stress-strain relationships, which involve negative tangent 
stiffness. Therefore, the incremental-iterative solution procedure often leads to 
numerical instability and divergence problems, especially when the energy dissipated 
by cracking and crushing phenomena is little compared with the elastic energy stored in 
the structure. In this paper, the sequentially linear approach is proposed as an 
alternative to incremental convergence methods. The robustness and effectiveness of the 
method is proved through plane concrete and RC case studies. 
 
INTRODUCTION  
 
In simulating the non-linear behaviour of the material RC, one has to use softening 
models, which involve negative tangent stiffness. Owing to these softening models the 
numerical solution, usually achieved by incremental-iterative procedures (e.g. Newton-
Raphson), can encounter instability and divergence problems. These problems are 
independent on the type of smeared crack formulation adopted. For this reason, a 
solution procedure for finite element analysis is proposed as an alternative to 
incremental convergence methods [1], [2]. The incremental-iterative method is replaced 
by a series of linear analyses using a special scaling technique with subsequent 
stiffness/strength reduction per critical element. The structure is discretized using 
standard elastic continuum elements. Young’s modulus, Poisson’s ratio and initial 
strength are assigned to the elements. Subsequently, the following steps are sequentially 
carried out: 
� Add the external load as a unit load. 
� Perform a linear elastic analysis. 
� Extract the ‘critical element’ from the results. The ‘critical element’ is the 

element for which the stress level divided by its current strength is the highest in 
the whole structure.  

� Calculate the ratio between the strength and the stress level in the critical 



element: this ratio provides the ‘global load factor’. The present solution step is 
obtained rescaling the ‘unit load elastic solution’ times the ‘global load factor’. 

� Increase the damage in the critical element by reducing its stiffness and strength, 
i.e. Young’s modulus E and strength, according to a saw-tooth constitutive law 
as described in the next section. 

� Repeat the previous steps for the new configuration, i.e. re-run a linear analysis 
for the structure in which the material properties of the previous critical element 
have been reduced. Trace the next critical saw-tooth in the critical element, 
repeat this process till the damage has spread into the structure to the desired 
level. 

The way in which the stiffness and strength of the critical elements are progressively 
reduced constitutes the essence of the model [3]. In other words, it is necessary to 
provide a saw-tooth approximation of the constitutive stress-strain relation.  
 
 
CONSTITUTIVE MODEL ADOPTED FOR RC 
 
An orthotropic fixed crack model based on total strain has been adopted in order to 
describe the constitutive behaviour of concrete. The following constitutive relation is 
assumed, being n the direction normal to the crack plane, and t the direction of the 
compressive struts: 
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where Ei is the reduced Young’s modulus in tension along the n-axis and Ej is the 
Young’s modulus in compression along the t-axis.  
 
Saw-Tooth Laws for Concrete in Tension  
A saw tooth diagram has been defined for the non-linear tension softening curve shown 
in Fig. 1a. The curve, inspired to the bilinear Model Code (MC90) expression [4], has 
been formulated in its first version by Belletti, Cerioni and Iori [5] and partly modified 
to be easily implemented in the sequentially linear procedure.  

The analytical expression is the following: 
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where cwandw1  are the crack openings when σ is equal to 0.15 ft and to zero 
respectively. This non-linear tension softening has been modified in order to be 
implemented into the saw-tooth diagram. The first step is to formulate the presented non 
linear tension softening as a function of total strain rather than crack strain. The total 
strain is the sum of the elastic strain eε  and the crack strain crε : 
 

E
crcre σεεεεε −=⇒+= , (4) 

So, Eq. (3) can be expressed as a function of crack strain crε , as follows, see [3]: 
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After some algebraic manipulations, the strain-stress relation for concrete in tension 

is the following: 
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the values of A, B, and C are reported into the nomenclature listed at the end of the 
paper.  

As shown in Fig. 1a, a strength range is set, as a percentage of the maximum tensile 
strength. In other words, we introduce a band or ‘strip’ into the softening diagram, 
delimited by two curves parallel to and equidistant from the original branch. The 
number of required teeth (N) and the values of Young’s modulus (Ei) and tensile 
strength (fti) at the current stage i in the saw-tooth diagram are automatically obtained as 
values depending on this strength range, chosen by the user. The material properties 
reduction due to cracking of the “critical element” (i.e. the size and shape of each tooth) 
is determined by the lower softening tail (see Figure 1a): 

ttiti pf2ff −= +− , (7) 



The intersection between the nonlinear tension softening and the elastic loading 
branch gives the strain εi, from which follows the reduced Young’s modulus: 
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  (a)        (b) 
Figure 1. (a) Saw-tooth diagram for non-linear tension softening (a) and saw-tooth 
procedure. (b). 
 

Adopting Eq.(6) and a value p of strength percentage, the corresponding uplifted 
stress is: 
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The intersection point (see Fig. 1b) between the nonlinear tension softening and the 

elastic branch corresponding to the linear behavior of the current stage in the saw-tooth 
diagram, is the following: 
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the values of a, b, and c are reported at the end, in the nomenclature list. The value of 

+
tif  given by Eq. (10) can finally be substituted into Eq. (8) to obtain 1iE + .  

 
Saw-Tooth Laws for Steel in Tension and compression 
We adopt an elastic perfectly plastic stress-strain diagram for reinforcing steel both 
intension and compression, according to EC2 prescriptions [6], (see Fig. 2). The 
uplifted post peak curve is the following: 

( ) yfp1+=+σ  (11) 

a) b)



 
Figure 2. Mother curve and saw-tooth approximations for steel in compression and 

tension. 
 

The intersection between the generic k secant elastic branch and the post peak plastic 
plateau is given by the following equation: 
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Finally, the updated (i.e. degraded) Young’s modulus becomes: 

 

                                         
( )

Lk0;
p1
p1E

fp1
E k

k

y
1k ≤≤

+
−

=
⋅−

=+ ε
                           (13) 

where k=L corresponds to complete damage of steel in tension or in compression.  
 
 
CASE STUDIES: PLANE CONCRETE AND RC STRUCTURES 
 
In this section some results of a symmetric notched beam (Fig. 3a), and of a reinforced 
concrete deep beam (DWT2) tested by Leonhardt and Walther [7] (Fig. 3b), are 
reported. The geometrical features of the notched beam are: total length 500 mm, span 
450 mm, height 100 mm, thickness 50 mm and notch depth 10 mm; the distance 
between the loading points is 150 mm. Some different meshes were used for the 
analysis [2], referred to as very coarse, coarse, medium, fine and very fine, respectively. 
The material parameters were given by: Young’s modulus MPaEc 38000= , Poisson’s 
ratio 2.0=ν , tensile strength MPaft 3= , fracture energy mNG f /60= . 



          
Figure 3. Meshes considered in the analyses of notched beam (a), and DWT2 beam (b). 
 

In Fig. 4 the load versus deflection curves obtained by adopting non-linear tension 
softening are reported. The reference curves obtained from the NLFE analysis with the 
fixed smeared crack model based on the concept of total-strain is shown for good 
comparison. The procedure turns out to be simple. Moreover, as the element size 
decreases, or the total number of teeth N increases, the results improve, meaning that the 
approach is mesh-size objective.  
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Figure 4. Notched beam: load-displacement diagram, nonlinear tension softening, 

coarse mesh (a), and fine mesh (b). 
 

Exploiting symmetry, only one-half of the DWT2 beam has been analyzed, Fig. 3b. 
The beam is modeled by four-noded plane stress elements for the concrete and two-
noded truss elements for the reinforcement. Perfect bond was assumed between the 
concrete and reinforcement. NLFE analyses have been carried out by adopting fixed 
smeared crack model, based on the concept of total-strain. The nonlinear analyses were 

a) b) 

a) b) 



performed under displacement control using regular Newton-Raphson. The load-
deflection curve is shown in Fig. 5a. It is worth noting that the NLFE analysis exhibits a 
very sudden drop in step 30. Here, the NLFE analysis diverged and the convergence has 
not been reached after 100 iterations. At this increment step, a crack besides the 
supporting member suddenly appears, while yielding of longitudinal stirrups occurs at 
the same time, over the middle support. Beyond this critical point, the analysis could be 
partially continued and the cracks become wider at step 60. The obvious conclusion is 
that the standard incremental-iterative Newton-Raphson procedure is not capable of 
adequately catching the sudden, explosive cracking that occurred in the experiment. 
 

0

500

1000

1500

2000

2500

0 0.5 1 1.5

Displacement [mm]

To
ta

l l
oa

d 
[k

N

Experimental

Sequentially linear analysis

NLFE analysis: fixed crack model

STEP 1500 f=0.819mm F=1930kN

 
Figure 5. DWT2 load-deflection diagram (a), experimental crack pattern (b) and 

concrete damaged elements in tension (c) at final load F=1930 kN. 
 

On the other hand, the same beam can be analyzed in the sequentially linear fashion. 
The sequentially linear analysis easily reveals what happens: a pronounced quasi-static 
snap-back behavior takes place revealing the very sudden and brittle development of the 
major vertical crack(s) close to the mid-support. This snap-back, together with the other 
ripples, appears automatically thanks to the scaling procedure. Fig. 5b shows the 
experimental crack pattern at failure, while the completely cracked concrete elements 
are shown in Fig. 5c.  

More other reinforced concrete structures, studied with the sequentially linear 
approach, are presented in [8]. 
 
 
CONCLUSIONS 
 
The results indicate that the sequentially linear method is capable of simulating brittle 
cracking and snap-backs, which are typical in plane concrete and RC structures. The 
approach always ‘converges’ as the secant saw-tooth stiffness is always positive 
definite. Divergence, often encountered with nonlinear FE analysis because of negative 
softening tangent stiffness, is avoided. The approach is stable and robust, therefore 
appealing to practicing engineers.  

a) 

 
NLFEA: step 29

NLFEA: step 30

NLFEA: step 60

b) c)



LIST OF NOMENCLATURE 
 

Eftcr =ε , 
8ff ckcm += , 
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0FG  = base value of fracture energy which depends on the maximum aggregate size, as 
the value of Fα , 
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