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ABSTRACT. The article discusses a contour element method applied to numerical
simulations of crack propagation trajectories in elastic structures. Because the
boundary integral equation degenerates for a body with two crack-surfaces occupying
the same location one of the forms of the displacement discontinuity method is
implemented. According to the implemented method, resultant forces and dislocation
densities, which are placed at mid-nodes of contour segments on one of the crack
surfaces, are characterized by the indirect boundary integral equation. Contrarily to
internal crack problems, for edge crack problems an edge-discontinuous element is
used at the intersection between a crack and an edge to avoid a common node at the
intersection. New numerical formulations that are built up on analytical integration are
implemented. Therefore, all regular and singular integrals are evaluated only
analytically. Tractions and resultant forces at a mid-node of any contour segment are
regularized by a nonlocal characterization function. Hence, values of their components
are obtained from the modified form of Somigliana’s identity that embraces nonlocal
elements and standard elements of kernel matrices used in the boundary element
analysis.

INTRODUCTION

The boundary integral equation for elastostatic problems can be derived from Betti’s
reciprocal work theorem (see Ref [1]) for two self-equilibrated states of displacement
u | u’, tractions t | t* and volume forces b | b*. If Hooke’s body is exposed to two
different systems of volume and surface forces, then the actual work done by the forces
of the first system along the displacements of the second system is equal to that work
done by the forces of the second system along the displacements belonging to the first
system:

[ 6] u,d@+ [ u,dr = [b,u; dQ + [t,u; dI (1)
Q r Q r



In Eq. 1 the displacements, u, , tractions, ¢, (i.e., the stress vectors, #, = 0, n,, related to
the outward normal vector, » ; ), and body forces, b,, are respectively determined on the
boundary I" = 6(Q) and in the domain Q.

For the i-direction at any field point r = (x, y) due to the unit force e; in the j-

direction applied at the load point r' = (x', '), fields of u*, t* and b* corresponding to
the governing solution of elasticity theory can be expressed as:

”1* (r) ( ) r') (displacement ﬁeld) , (2a)
£(r)= ( r')e (r’) (traction field) , (2b)
b (r)=5(r)e(r’) (body force field) (2¢)

where U, (r,r') and T, (r,r') are the fundamental solutions for linear elastic problems,

8(r) i

lower case of r or r’ represents a point located in Int(Q), while the upper case of R

or R’ represents a point placed on /'. For two-dimensional elastostatic problems,
U, (r,r') and Z;j(r, r') are given by

U (r r) f; [(3_4‘/)111(”)517 _r,ir,j] ’ (3a)
T (rr)= Zrc{[( ~20)8, + 2, )T (- 2w e, _rn)}, (3b)

where y. = —1/[4z(1-v)], 0, is the Kronecker delta function, x is the shear modulus

of elasticity and v is the Poisson’s ratio. Note that components of the gradient of the
one-form d A are denoted by the comma derivative: 4, = 04/0x, .

According to the expressions 2 in the absence of body forces, b, Eq. 1 can be
rewritten for two-dimensional elastostatic problems as:

j T,(r, R, (R))dl (R') = [U,(r,R')t,(R)dr(R')
a() 4)
svrem(Q) (ij=12)

MODELING COPLANAR CRACK SURFACES

The straightforward application of Eq. 4 to crack problems leads to mathematical
degeneration when upper and lower crack surfaces of a body occupy the same location.



In the presence of a crack in the domain @, the boundary of a two-dimensional
body, I = 3(Q), can be divided into parts: "= I', + I'") + '), where I'") and I'D
represent the upper and lower crack surfaces and /', represents the remaining

boundary. From fundamental solutions 3, the displacement and traction on the lower
and upper crack surfaces have the properties that

U, (e, R =0, R) (5a)
T, RE) = =13 (e REY). (5b)

The change in sign in tractions in expression 5b is because the direction of the normal is
opposite on the two crack surfaces. A simple description of a crack is two coplanar

surfaces that are closed, e.g., I é_} - I é” (see Ref. [2]). Because of I é_} =T é+} and
expressions 5, Eq. 4 becomes

I R')dI'(R') +
jT(r R{})A ]( C{})dr(Rg-}) - jU r RS (ROD)ar®R) + (6)
FJU (R (R)ar (R)
where
8 (RE) = (R = (RO). (7a)
2o (RE)= 1 (RE) -1, (RE). (7b)

For traction free cracks, or when the crack is loaded by equal and opposite tractions
2t j( ’C{‘}) = 0. Hence, Eq. 6 can be rewritten in the form:

J.T r,R)u,(R)dI'(R) + J.T r. R, )au (R )ar(R)H)

= [U, (e, R)e,(R)ar (R). (®)

Iy

Equation 8 has the form as the standard integral equation 4 with an additional integral
along the lower crack surface, I’ é_}. The boundary form of this equation is indetermi-
nate (i.e., when R e I’ é_} the number of unknown variables in the system of linear
equations is greater than the number of linear equations, which represent the boundary



form of the integral equation 8 with discrete distributions of u,, ¢, and Au, along the
boundary parts /', and I’ é‘}, respectively). Therefore, to determine the displacement
discontinuity, Au,(R ( ¢ )) along I} ) an additional integral equation for the crack surface
tractions (i.e., ti(R(c_)):Ug(R(c_))”j(R(c_))) must be derived. Such equation can be

obtained by means of Hooke’s law:

O-g/(r)zlz_%”k,k( +,u[ +” ()] (k:1,2). )

By differentiating ul.(r) in Eq. (8) with respect to the source point r and then
substituting the derivatives: ukjk(r), u; j(r) and uj,l.(r) into the expression 9, the

additional integral equation for o (r) is given by

o,(r) = [D,(rR)(R)ar(R) - j S, (r, R )u, (R")dI (R') +
a _ ISk,,rR”)Auk( RH)ar(®RE), (10)
I"C}
where
= 12V;’ U, ,(0)8, + ulU,, (0)+U, ,(r)] (1=12), (11a)
o= kT ()6, + T )+ 7, ). (11b)

Multiplying both sides of Eq. 10 by n, (r) gives

Ty

i(r) = [IDk,,(r,R')rk(R’)dF(R')]n,-(r) - { [ 8., R’)uk(R’)dF(R’)]nj(r) +
" (12)
jsk,, ) (R )ar (R |n (r).

The boundary forms of the integral equations 8 and 12 define the problem to be solved.
However, the fundamental drawback of the boundary form of Eq. 12 is that this
equation contains the 7 singularity that is difficult to handle in numerical calculations.



TREATMENT OF THE STRONGLY SINGULAR INTEGRALS

To avoid the numerical difficulties with the strongly singular integrals in Eq. 8 the idea
of integration by parts developed by Ghosh et al. [3] and Zang [4] is adopted.
A single integration by parts starts with

a ' ' a ' ' i au (R')
S PR (R)]= L e RO (R) -, (e R)V=S22 (1)
and integrates both sides of the equality 13,
[ ZEmerp®@]a®) = [ 2L ®)a®) +
I'xp s LN 0s (14)
e ).
os
FAB
Rearranging gives
8u<(R')
jT r.R)u,(R')ds(R) = [- 7, (r, R )u (R')] + le(r,R')é—ds(R’) (195
s
FAB
where T (r R’ [— w, r R )] Applying integration by parts for the upper and
lower crack surfaces gives
jT r, R u (R )ar(R) =
"+ "+ c "+ au R,{+} 1+ (163-)
R ) S P R P
re! ¢
Z/(raR'c{*_})“/(Rg_})dF (R'c{‘_}) =
(-}
e (16b)
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For the internal crack problems when the displacements of the upper and lower crack
) )
(11C )=ui(R’ci‘°‘ ) and

) -} . .
u, (R’CBC ): u, (Rg“ )), the lower-order singular integral can be expressed by

surfaces at both crack tips A and B coincide (i.e., u,

1



J T (e, R Ju, (R )ar(RE)  + jr.(r,Rg+})uj(Rg+})dp(Rg+}) _

ri ritt

-} (17)
e o Nartie) = ] gl R )
r ) c

However, for edge cracks problems when the displacements of the upper and lower

. o W) e
crack surfaces only at the one of the crack tips coincide (i.e., uA(R"C ): u[(R’CC ) and

u, (R’B‘ );t u, (R’B‘ )) the lower-order singular integral can be expressed by
j T, (e, R ) Au (R )ar (R -

-} (18)
N P L AN
ri ¢

Therefore, for edge cracks problems the edge-discontinuous element is used at the

intersection between a crack and an edge to avoid a common node at the intersection.
Reduction of the order of the strongly singular integrals in the equality 12 can be

obtained by integration of both sides of this equality with respect to the field point,

R{g} , along the lower crack surface, I é*}, that consists of smooth straight segments

from one crack tip A to R{C"}

ER)= [o®R)ar®RY) :vARDc AB. . (19)

For the internal crack problems, an additional constraint equation for the dislocation
densities, g( g ) O|Au, (R' )]/ﬁsc , along the lower crack surface is given by

jgi(R{C_}) C})'
rit

NUMERICAL TREATMENT OF THE BOUNDARY INTEGRAL EQUATIONS

For a given source point, £, the boundary forms of Eqs 8 and 19 can be discretized

into N, boundary contour segments and N, crack contour segments as follows:



Uia) +ZLZZ(HM Uj(g) +HL ﬂ)ul(ﬁ )+Z ZZIHU ) =

p=1 j=1 y=1 j=1 (203)

ZZG ﬂ)’/(ﬂ

,6’ 1 j=1
£ 2y;(CZZ(CHF ul )+ CHHE uh ) - 2/,%,ZZCIH _
B=1 j=I v r=tj=1 (20b)
(a)
2.2.2.CGyp typ + €
p=1 j=1

where ui(a) :%(uifa)+uf(a)), MIL(,B) :uifﬂﬂ) (fOI‘ ﬂ=1,2,...,NB —1), ulfl) :uiL(NB) and (Ci

are arbitrary constants of integration.
On each boundary contour segment, 477, displacement components: ug(ﬂ and

,(7(),), are approximated by the linear 1nterp01at10n function. However, traction compo-

nents: t(”(’)) and t(?)), are constant along 47, like dislocation density components:

gg( ' and gq , and resultant force components: F {_} and F } , along any crack

contour segment, Al . Therefore, integrations of 1ntegrand functlons of the discrete

version of the integral equations 20 can be performed exactly. Exact integration is
generally faster than numerical integration for a level of reasonable numerical accuracy.

The transformation of integration results from the local co-ordinates system (5((5)) ,77((;’)))

to the global one (x, y) is straightforward.

Due to proper shape functions for the displacement field, the strain field and the
stress field along each contour segment a special treatment, used to circumvent the well-
known corner problem of the boundary element method, is not required. The matrices:

F(a) L(a) F(a) L(a) () () a) L(a)
H(,B) , H(ﬂ) . CH(ﬂ) . CH(ﬂ) , G(ﬂ)’ CG(ﬂ), IHEﬂ) and CIH(ﬂ) , 1N EqS 20 are
assessed by integrating the fundamental solutions analytically (see Ref [5]) without the

necessity to use numerical integration over each contour segment.

REGULARIZATION BY A NONLOCAL CHARACTERIZATION FUNCTION

According to the nonlocal theory of Eringen [6], the stress is computed by averaging the
local stress that would be obtained from the local model. Thus, the nonlocal approach of
Eringen can be characterized as averaging of the stress. To analyze the nonlocal
mechanical behavior, the expressions that contain stress components in Eqs 20 are
regularized by



r'—r_, )o,(r) do(r’), 1)

(o)) = j“q

Q

where o

tion function and the pointed brackets < > denote the averaging operator.

(r') are classical stress components, a(“r'—r” GD) is a nonlocal characteriza-

Here, the concept of geodetical distance,

r'— r|| op » Suggested by Polizzotto et al. [7],

is applied as the length of the shortest path joining r with r’ without intersecting the
boundary surface. The nonlocal characterization function can be expressed as a form of
the Gauss distribution function. However, in the vicinity of the boundary of a finite
body (what is typical for the boundary element analysis), it is assumed that the averag-
ing is performed only on the part of the domain of influence that lies within the solid.
Therefore, in this case the formula of averaging 21 is replaced by the more enhanced
form:

<0€7 (r)> =1- y(r)]ogj (r)+ I a(“r' - r||GD )(7!7 (r') dQ(r') , (22)

Q

where y(r)= J.a(] r’—r||GD )dQ(r’).

Q

CONCLUSION

The aim of the presented research is to improve and to develop the boundary element
method applied to modeling of crack propagation trajectories (see Ref. [8]).
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