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ABSTRACT. The article discusses a contour element method applied to numerical 
simulations of crack propagation trajectories in elastic structures. Because the 
boundary integral equation degenerates for a body with two crack-surfaces occupying 
the same location one of the forms of the displacement discontinuity method is 
implemented. According to the implemented method, resultant forces and dislocation 
densities, which are placed at mid-nodes of contour segments on one of the crack 
surfaces, are characterized by the indirect boundary integral equation. Contrarily to 
internal crack problems, for edge crack problems an edge-discontinuous element is 
used at the intersection between a crack and an edge to avoid a common node at the 
intersection. New numerical formulations that are built up on analytical integration are 
implemented. Therefore, all regular and singular integrals are evaluated only 
analytically. Tractions and resultant forces at a mid-node of any contour segment are 
regularized by a nonlocal characterization function. Hence, values of their components 
are obtained from the modified form of Somigliana’s identity that embraces nonlocal 
elements and standard elements of kernel matrices used in the boundary element 
analysis. 
 
 
INTRODUCTION 
 
The boundary integral equation for elastostatic problems can be derived from Betti’s 
reciprocal work theorem (see Ref [1]) for two self-equilibrated states of displacement 
u│ ∗u , tractions t│ ∗t  and volume forces b│ ∗b . If Hooke’s body is exposed to two 
different systems of volume and surface forces, then the actual work done by the forces 
of the first system along the displacements of the second system is equal to that work 
done by the forces of the second system along the displacements belonging to the first 
system: 
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In Eq. 1 the displacements, iu , tractions, it  (i.e., the stress vectors, jjii nt σ= , related to 
the outward normal vector, jn ), and body forces, ib , are respectively determined on the 
boundary ( )ΩΓ ∂=  and in the domain Ω . 

For the i-direction at any field point ( )yx,=r  due to the unit force je  in the j-

direction applied at the load point ( )yx ′′=′ ,r , fields of ∗u , ∗t  and ∗b  corresponding to 
the governing solution of elasticity theory can be expressed as: 
 

( ) ( ) ( ) ( )fieldnt displaceme,* rrrr ′′= jiji eUu  ,   (2a) 

( ) ( ) ( ) ( )fieldtraction ,* rrrr ′′= jiji eTt  ,   (2b) 

( ) ( ) ( ) ( )field forcebody * rr ′= ii erb δ  ,    (2c) 
 
where ( )rr ′,ijU  and ( )rr ′,ijT  are the fundamental solutions for linear elastic problems, 
( )rδ  is the Dirac delta function and rr ′−=r  is the distance between r  and r′ . The 

lower case of r  or r′  represents a point located in ( )ΩInt , while the upper case of R  
or R′  represents a point placed on Γ . For two-dimensional elastostatic problems, 

( )rr ′,ijU  and ( )rr ′,ijT  are given by 
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where ( )[ ]νπχ −−= 141C , ijδ  is the Kronecker delta function, µ  is the shear modulus 
of elasticity and ν  is the Poisson’s ratio. Note that components of the gradient of the 
one-form Ad  are denoted by the comma derivative: kk xAA ∂∂=, . 

According to the expressions 2 in the absence of body forces, ib , Eq. 1 can be 
rewritten for two-dimensional elastostatic problems as: 
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MODELING COPLANAR CRACK SURFACES 
 
The straightforward application of Eq. 4 to crack problems leads to mathematical 
degeneration when upper and lower crack surfaces of a body occupy the same location. 



In the presence of a crack in the domain Ω , the boundary of a two-dimensional 
body, ( )ΩΓ ∂= , can be divided into parts: { } { }−+ ++= CCB ΓΓΓΓ , where { }+

CΓ  and { }−
CΓ  

represent the upper and lower crack surfaces and BΓ  represents the remaining 
boundary. From fundamental solutions 3, the displacement and traction on the lower 
and upper crack surfaces have the properties that 
 

{ }( ) { }( )−+ ′=′ CijCij UU RrRr ,,  ,    (5a) 
{ }( ) { }( )−+ ′−=′ CijCij TT RrRr ,,  .    (5b) 

 
The change in sign in tractions in expression 5b is because the direction of the normal is 
opposite on the two crack surfaces. A simple description of a crack is two coplanar 
surfaces that are closed, e.g., { } { }+− → CC ΓΓ  (see Ref. [2]). Because of { } { }+− = CC ΓΓ  and 
expressions 5, Eq. 4 becomes 
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where 
 

( )( ) ( )( ) ( )( )−+− ′−′=′∆ CiCiCi uuu RRR  ,    (7a) 
( )( ) ( )( ) ( )( )−+− ′−′=′∑ CiCiCi ttt RRR  .    (7b) 

 
For traction free cracks, or when the crack is loaded by equal and opposite tractions 

{ }( ) 0=′∑ −
Cjt R . Hence, Eq. 6 can be rewritten in the form: 
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Equation 8 has the form as the standard integral equation 4 with an additional integral 
along the lower crack surface, { }−

CΓ . The boundary form of this equation is indetermi-
nate (i.e., when { }−∈ CΓR  the number of unknown variables in the system of linear 
equations is greater than the number of linear equations, which represent the boundary 



form of the integral equation 8 with discrete distributions of iu , it  and iu∆  along the 
boundary parts BΓ  and { }−

CΓ , respectively). Therefore, to determine the displacement 
discontinuity, ( )( )−∆ Ciu R , along { }−

CΓ  an additional integral equation for the crack surface 
tractions (i.e., ( )( ) ( )( ) ( )( )−−− = CjCijCi nt RRR σ ) must be derived. Such equation can be 
obtained by means of Hooke’s law: 
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By differentiating ( )riu  in Eq. (8) with respect to the source point r  and then 
substituting the derivatives: ( )rkku , , ( )rjiu ,  and ( )riju ,  into the expression 9, the 
additional integral equation for ( )rijσ  is given by 
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where 
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Multiplying both sides of Eq. 10 by ( )rjn  gives 
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The boundary forms of the integral equations 8 and 12 define the problem to be solved. 
However, the fundamental drawback of the boundary form of Eq. 12 is that this 
equation contains the r-2 singularity that is difficult to handle in numerical calculations.  
 
 



TREATMENT OF THE STRONGLY SINGULAR INTEGRALS 
 
To avoid the numerical difficulties with the strongly singular integrals in Eq. 8 the idea 
of integration by parts developed by Ghosh et al. [3] and Zang [4] is adopted. 

A single integration by parts starts with  
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and integrates both sides of the equality 13, 
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Rearranging gives 
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where ( ) ( )[ ]RrRr ′−
∂
∂

=′ ,, ijij W
s

T . Applying integration by parts for the upper and 

lower crack surfaces gives 
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For the internal crack problems when the displacements of the upper and lower crack 
surfaces at both crack tips A and B coincide (i.e., 

{ }( ) { }( )−+
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CC ii uu AA RR  and 
{ }( ) { }( )−+

′′ = CC

CC ii uu BB RR ), the lower-order singular integral can be expressed by 
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However, for edge cracks problems when the displacements of the upper and lower 
crack surfaces only at the one of the crack tips coincide (i.e., 

{ }( ) { }( )−+

′′ = CC

CC ii uu AA RR  and 
{ }( ) { }( )−+
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CC ii uu BB RR ), the lower-order singular integral can be expressed by 
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Therefore, for edge cracks problems the edge-discontinuous element is used at the 
intersection between a crack and an edge to avoid a common node at the intersection. 

Reduction of the order of the strongly singular integrals in the equality 12 can be 
obtained by integration of both sides of this equality with respect to the field point, 

{ }−
CR , along the lower crack surface, { }−

CΓ , that consists of smooth straight segments 
from one crack tip CA  to { }−

CR  
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For the internal crack problems, an additional constraint equation for the dislocation 
densities, { }( ) { }( )[ ] { }−−− ∂′∆∂=′ CCiCi sug RR , along the lower crack surface is given by 
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NUMERICAL TREATMENT OF THE BOUNDARY INTEGRAL EQUATIONS 
 
For a given source point, ( )αP , the boundary forms of Eqs 8 and 19 can be discretized 
into BN  boundary contour segments and CN  crack contour segments as follows: 
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On each boundary contour segment, ( )βB∆Γ , displacement components: ( )
( )α
βξu  and 

( )
( )α
βηu , are approximated by the linear interpolation function. However, traction compo-

nents: ( )
( )α
βξt  and ( )

( )α
βηt , are constant along ( )βB∆Γ  like dislocation density components: 
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( ){ }−α
βξg  and ( )

( ){ }−α
βηg , and resultant force components: ( )

( ){ }−α
βξF  and ( )

( ){ }−α
βξF , along any crack 

contour segment, ( )βC∆Γ . Therefore, integrations of integrand functions of the discrete 
version of the integral equations 20 can be performed exactly. Exact integration is 
generally faster than numerical integration for a level of reasonable numerical accuracy. 
The transformation of integration results from the local co-ordinates system ( )

( )
( )
( )( )α
β

α
β ηξ ,  

to the global one ( )yx,  is straightforward. 
Due to proper shape functions for the displacement field, the strain field and the 

stress field along each contour segment a special treatment, used to circumvent the well-
known corner problem of the boundary element method, is not required. The matrices: 
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assessed by integrating the fundamental solutions analytically (see Ref [5]) without the 
necessity to use numerical integration over each contour segment. 
 
 
REGULARIZATION BY A NONLOCAL CHARACTERIZATION FUNCTION 
 
According to the nonlocal theory of Eringen [6], the stress is computed by averaging the 
local stress that would be obtained from the local model. Thus, the nonlocal approach of 
Eringen can be characterized as averaging of the stress. To analyze the nonlocal 
mechanical behavior, the expressions that contain stress components in Eqs 20 are 
regularized by 
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where ( )r′ijσ  are classical stress components, ( )

GD
rr −′α  is a nonlocal characteriza-

tion function and the pointed brackets  denote the averaging operator. 

Here, the concept of geodetical distance, 
GD

rr −′ , suggested by Polizzotto et al. [7], 
is applied as the length of the shortest path joining r  with r′  without intersecting the 
boundary surface. The nonlocal characterization function can be expressed as a form of 
the Gauss distribution function. However, in the vicinity of the boundary of a finite 
body (what is typical for the boundary element analysis), it is assumed that the averag-
ing is performed only on the part of the domain of influence that lies within the solid. 
Therefore, in this case the formula of averaging 21 is replaced by the more enhanced 
form: 
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CONCLUSION 
 
The aim of the presented research is to improve and to develop the boundary element 
method applied to modeling of crack propagation trajectories (see Ref. [8]). 
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