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ABSTRACT. This paper deals with the problem of the critical plane determination for 
multiaxial fatigue failure criteria. Experimental results from multiaxial proportional, 
non-proportional cyclic loading and variable-amplitude bending and torsion were used 
to determine the macroscopic fracture plane orientations and the fatigue lives. Some 
known multiaxial critical plane criteria were verified based on the fracture plane 
orientations and experimental fatigue lives. It was concluded that frequently the critical 
and fracture plane orientations do not coincide. However, the morphology of fracture 
planes is a key for an appropriate choice of the fatigue failure criterion for the fatigue 
life estimation. 
 
 
INTRODUCTION 
 
Various multiaxial fatigue failure criteria based on the critical plane approach have been 
proposed [1-8]. This approach is based upon the experimental observation that fatigue 
cracks initiate and grow on certain material planes. Therefore, it is assumed that only 
stress or/and strain components acting on the critical plane are responsible for the 
material fatigue failure. The critical plane criteria define different functions that 
combine the shear and normal stress or/and strain components on a plane into one 
equivalent parameter called damage parameter. It is commonly accepted that depends 
on loading level, temperature, material type, state of stress, materials generally form one 
of the two types of cracks - shear cracks or tensile cracks. Hence, the equivalent damage 
parameter is usually compared to the uniaxial shear or tensile damage parameter 
obtained by the experimental tests under torsion or push-pull loading. However, it is 
also accepted that either under multiaxial and uniaxial fatigue tests the cracks may 
initiate and propagate on different planes – contradictory to the one critical plane 
orientation. The following conclusion appears: the critical plane and the fracture plane 
notions must be separated. The critical plane is simply a plane that is used in the fatigue 
life assessment. The fracture plane at the microscale/macroscale is a plane where 
material cohesion is lost. Depending on loading levels, state of stress etc. the critical 
plane and fracture plane orientations may or not coincide.  

We postulate that the critical plane approach may be successfully used in the fatigue 
life estimation under different test conditions but the proposed damage parameter 
should be equivalent to the uniaxial one not only in term of the total fatigue life but also 



in term of the macroscopic fracture plane behaviour. For example, if under uniaxial 
torsion loading for a given fatigue life, some macroscopic cracks coincide with the 
maximum shear stress plane and other with the maximum normal stress plane than the 
fatigue criterion based on the torsion S-N curve should be used in the fatigue life 
estimation if the same fracture behaviour is revealed under multiaxial loading. 
 
 
A BRIEF REVIEW OF SOME MULTIAXIAL FATIGUE FAILURE CRITERIA 
BASED ON THE CRITICAL PLANE APPROACH 
 
According to the critical plane approach, the fatigue failure of the material is due to the 
stress or/and strain hostories acting on the critical plane. Different functions of these 
components on the critical plane (with normal n  and shear s  unit vectors) were 
proposed. Fatigue failure occurs if the following general expression is fulfilled: 
 
 QKttttF nsnnsn >]),(),(),(),([ εετσ , (1) 
 
where: σn, τns are the normal and shear stress components on the critical plane; εn, εns 
are the normal and shear strain components on the critical plane; K is the material 
coefficient set; Q is the fatigue limit. For a limit state of stress, the following general 
form of fatigue failure can be presented 
 
 qKttttF nsnnsn =]),(),(),(),([ εετσ , (2) 
 
where q is the material parameter for a given number of cycles to failure.  

Some multiaxial critical plane criteria applicable to the cyclic loading are presented 
and adapted to variable-amplitude loading. 
 
The Findley Criterion 
 
Findley [2] proposed a linear combination of the maximum normal stress σn,max and the 
shear stress amplitude τns,a on the critical plane for a given number of cycles to failure Nf 
 
 fk nans =+ max,, στ , (3) 
 
where f and k are the material coefficients. The critical plane orientation coincides with 
the plane orientation where the maximum value of this linear combination occurs. It 
depends on the material coefficient k. Findley noticed that k value was small for ductile 
materials and the position of the critical plane for these materials approached to the 
direction of maximum shear stress. A high k value is characteristic for brittle materials 
like cast iron, and the critical plane position is then compatible with the position of 
maximum principal stress direction σ1. Findley did not define a mathematical formula 
for the material coefficient f. Some researchers [3-4] assume that it can be determined 
from the shear-mode cracking 
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where τaf, mτ are the fatigue limit and the exponent of the S-N curve for fully reversed 
(R=-1) torsion loading, respectively; Nf is the considered number of cycles to failure; Nτ 
is the number of cycles corresponding to the fatigue limit τaf for fully reversed torsion 
loading. 

The Findley criterion and others are based on the cyclic properties of fatigue loading 
for which the amplitude of the shear stress τns(t) can be found. The problem appears 
under random loading. Some authors [5, 6] proposed to extract the amplitudes by the 
rainflow method taking the normal stress component σn(t) or the shear stress component 
τns(t) as the cyclic counting variable and then the maximum or the amplitude of the 
remained loading component is calculated for each extracted cycle. However, such 
approach is complicated and time consuming since for every extracted cycle the two 
loading parameters (shear and normal) must be found. Nevertheless, it is possible to 
adapt Findley and other criteria to random loading. Our aim it to define the equivalent 
loading history based on the particular failure criterion. For the Findley criterion, the 
equivalent stress course is as follows 
 
 )()()( tktt nnseq σττ += . (5) 
 
The equivalent shear stress history τeq(t) at observation time T is then used as the cyclic 
counting variable. In this case, the range of amplitudes can be divided into the finite 
numbers of stress levels. For each i-th stress level )(

,
i

aeqτ , damage degree is computed by 
the general equation as follows 
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where F is the generalised fatigue damage parameter (for the Findley criterion: F=τ), 
n(i) is the number of cycles assigned into the i-th stress level, a is a coefficient allowing 
to include amplitudes below Faf in the damage accumulation, )(i

fN is a computed number 
of cycles to failure for the i-th stress level (e.g. by Eq. (4)). It is assumed that a = 0.5 is 
sufficient, for lower value, the damage degree is too small to be taken into account. The 
proposed equivalent history must keep the frequency and the mean value of shear and 
normal loading components on the critical plane. It should be noted that under the 
proportional cyclic loading Eqs (4) and (5) result in the same damage degree. The 
critical plane orientation is determined by the maximum accumulated damage degree D 
 
 { }Dsn max:),( . (7) 
 



The Matake Criterion 
 
Matake [7] introduced a linear combination of the shear and normal stresses on the 
critical plane, similar to the Findley proposal 
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where σn,a is the normal stress amplitude on the critical plane. However, the critical 
plane orientation coincides with the maximum shear stress amplitude. For such 
orientation of the critical plane, it is possible to determine the material coefficient k. For 
uniaxial torsion loading, the plane of the maximum shear stress amplitude does not 
experience the normal stress. Therefore, the material coefficient k is determined from 
uniaxial push-pull tests. For fatigue limit, τns,a = 0.5σaf, σn,a = 0.5σaf; where σaf  is the 
fatigue limit under push-pull tests (R=-1). Eq. (8) takes the following form 
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From Eq. (9), the k coefficient is as follows 
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Under random loading, the equivalent shear stress history has the same mathematical 

form as Eq. (5). However, for the Matake criterion the maximum shear stress range 
determines the critical plane orientation.  
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where T is the time of observation. Damage degree D(i) is computed on the critical plane 
for each i-th stress level according to the general Eq. (6), where F=τ.  
 
The Maximum Normal Stress Criterion on the Critical Plane (max{σn}) 
 
This failure criterion comes from the static hypothesis of material strength. According 
to this criterion, the maximum normal stress range is responsible for the fatigue of 
materials. For the cyclic loading it leads to the following equation  
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where mσ is the exponent of the S-N curve for fully reversed (R=-1) push-pull loading; 
Nσ is the number of cycles corresponding to the fatigue limit σaf. 

For random loading the equivalent stress history is as follows 
 
 )()( tt neq σσ = . (13) 
 
Damage degree D(i) is computed on the critical plane for each i-th stress level according 
to the general Eq. (6), where F=σ. 
 
The Fatemi-Socie Criterion (FS) 
 
Fatemi and Socie [8] observed the fatigue fractures and came into conclusion, that the 
normal stress σn on the maximum shear strain range plane accelerates the fatigue 
damage process through the crack opening. They proposed the following combination 
of the shear strain amplitude γns,a and the maximum normal stress σn,max  
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where ν is the Poisson’s ratio, E is the Young’s modulus, σy is the quasi-static yield 
stress, εf’, c are the normal fatigue ductility coefficient and exponent, respectively, w is 
the material coefficient. The critical plane is the plane of the maximum shear strain 
amplitude γns,a. The complicated right side of Eq. (14) comes from the decomposition of 
the total shear strain amplitude into elastic and plastic parts, which are then compared to 
the push-pull fatigue characteristics on the critical plane. Such methodology results in 
appearance of material coefficient w on both sides of Eq. (14). 

For random loading, the following equivalent shear strain history is applied 
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In Eq. (15), unlike in the previous criteria, the maximum normal stress σn,max on the 
critical plane is applied instead of the normal stress course σn(t) to avoid nonlinearity in 
function for the equivalent shear strain history. The nonlinear function would not keep 
the mean value of strain and the frequency could be changed.  

The critical plane orientation under random loading is the plane with the maximum 
shear strain range 
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Damage degree D(i) is computed on the critical plane for each i-th stress level according 
to the general Eq. (6), where F=γ  with the assumption γaf = τaf/G (G is the Kirchhoff’s 
modulus). 



 
Damage Degree Accumulation and Fatigue Life Calculation 
 
For the variable-amplitude loading, two linear damage accumulation hypotheses were 
applied: well known Palmgren-Miner hypothesis [9] and Sorensen-Kogayev hypothesis 
[10].  Both hypotheses may be written as follows 
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where D(i) is the damage degree computed according to the general Eq. (6), p is the 
hypothesis coefficient, j is the total number of loading levels (we assume j = 64). For 
Palmgren-Miner hypothesis p = 1. For Serensen-Kogayev p is calculated according to 
the following equations: 
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where f(i) is the frequency of the i-th loading level, max

,aeqF  is the maximum amplitude of 
the generalised fatigue damage parameter (F=τ, σ, or γ). 

Accumulated damage degree D at observation time T is used to estimate the fatigue 
life according to the following expression 
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In the case of the cyclic loading, the number of cycles to failure Nexp is computed 

directly from Eqs (4), (8), (12), (14) and then recalculated to  
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where f is the frequency of the cyclic loading. 
 
 
FATIGUE TESTS 
 
Detailed information about the experimental setup can be found in [11, 12]. Fatigue 
tests were performed on the round full cross-section specimen made of 18G2A steel in 
the high cycle fatigue regime (HCF) under constant- and variable-amplitude combined 
bending and torsion moment histories measurement (bending: Mb(t), torsion: Mt(t)). The 
mechanical properties of the 18G2A steel are shown in Tab. 1. 



Table 1. Mechanical properties of the 18G2A steel 
Property Value 
Quasi-static yield stress,  σy, Mpa 357 
Ultimate strength,  σu, Mpa 535 
Young’s modulus,  E, Gpa 210 
Poisson’s ratio,  ν 0.30 
Fatigue limit for fully reversed torsion loading,  τaf, MPa (*) 142.5 
Exponent of the S-N curve for fully reversed torsion loading,  mτ  (*) 12.3 
Number of cycles corresponding to the fatigue limit τaf for fully reversed torsion 
loading,  Nτ , cycles 

1.98·106 

Fatigue limit for fully reversed push-pull loading, σaf, Mpa 204 
Exponent of the S-N curve for fully reversed push-pull loading,  mσ , 8.2 
Number of cycles corresponding to the fatigue limit τaf for fully reversed push-
pull loading,  Nσ , cycles 

1.24·106 

Fatigue ductility coefficient for fully reversed push-pull loading,  εf’, 0.693 
Fatigue ductility exponent for fully reversed push-pull loading,  c, -0.410 
Fatigue strength coefficient for fully reversed push-pull loading,  σf’, MPa 782 
Fatigue strength exponent for fully reversed push-pull loading,  b, -0.118 
Cyclic hardening coefficient,  K’, Mpa 869 
Cyclic hardening exponent,  n’, 0.287 

(*) – value recalculated from the torsion S-N curve performed on the full round cross-section specimen 
using the algorithm presented in the next paragraph.  
 
For the constant-amplitude sinusoidal proportional and non-proportional loading, the 
tests were carried out with a phase shift δ = π/2 and frequency f = 20 Hz under different 
ratios of the torsion and bending moments λM = Mt,max/Mb,max. For the variable-
amplitude loading, the specimens were subjected to bending or torsion loading with a 
normal probability distribution and a narrow frequency band. The fatigue life and the 
macroscopic fatigue fracture plane orientation was determined for each specimen with 
the assumption that the fracture plane orientation could be determined from the crack 
line position observed on the photos of the specimen surface (crack length around 
2÷3mm). The experimental results are presented in Tab. 2, where 

expα̂  is the averaged 
value of experimental angles αexp, >÷< maxmin ˆˆ αα  is the confidence interval (assuming a 
normal distribution of the αexp) which contains 50% of the probability and αexp is the 
angle between unit-normal vector n to crack plane and the specimen axis z. 

Two fatigue crack behaviours were noticed: (i) one general crack orientation at the 
macroscale was observed under all the investigated constant-amplitude loadings and 
under the variable-amplitude bending; (ii) two crack orientations were observed for the 
specimens subjected to variable-amplitude torsion. The first orientation with a crack 
length of around 0.15-0.3 mm is parallel to the specimen axis. The other orientation 
comes from branching of the primary crack, and these branching directions are inclined 
to the specimen axis by around 45o (load case no 7). 
 
 



Table 2. Experimental data 
No δ Mb,max λM expα̂  >÷< maxmin ˆˆ αα  

 rad Nm - [o] [o] 
Constant-amplitude loading 

1 0 8.0; 10.0; 10.3 0.68 18.1 17.1 ÷ 19.0 
2 0 6.4; 7.4; 8.2; 9.8 0.96 21.9 20.0 ÷ 23.8 
3 0 5.3; 6.2; 7.2;  1.44 26.5 23.8 ÷ 29.2 
4 π/2 8.9; 9.2; 9.6; 10.3 0.68 12.3 9.1 ÷ 15.5 
5 π/2 8.3 0.98 8.4 7.3 ÷ 9.5 
6 π/2 6.4; 7.2 1.42 10.2 6.4 ÷ 13.9 

Variable-amplitude loading 
7 - 18.4 ∞ 43.6/86.3 42.2÷45.0/82.3 ÷ 90.2 
8 - 16.3 0 1.5 0.8÷2.2 

 
 
STRESS AND STRAIN COMPUTATIONS  
 
Stress and strain histories in an arbitrary point (x, y) of the specimen cross-section were 
computed from bending and torsion moments Mb(t), Mt(t) considering the plastic strains. 
Plasticity was included in the computation since the cyclic properties (K’, n’) of the 
18G2A steel reveal the appearance of the plastic strains even under low stress level 
( %65.0=p

aε  for σaf = 204 MPa). The Chu [13] plasticity model of material behaviour 
was applied to determine the strain-stress relation and the influence of loading history 
on the strain state for each point of the specimen cross-section. For every increment of 
bending ∆Mb(t) and torsion ∆Mt(t) moments the following quasi-static equilibrium 
equations were solved by the trust-region method [14] 
 
 0)(),,( =∆−∆∫ tMydAtyx b
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where the increment ∆ is defined as ∆σzz(x, y, t) = σzz(x, y, t+∆t)−σzz(x, y, t) is the normal 
stress increment for the finite element with the origin in the plane (x, y); ∆τzφ(t, ρ) is the 
shear stress increment for the finite element with the origin determined by the radius 

22 yx +=ρ ; dA is the area of the finite element. More information about the stress and 
strain computations are presented in [15]. 
 
 
EVALUATION AND DISCUSSION 
 
The variable-amplitude torsion and bending were used to evaluate the damage 
accumulation hypothesis. Calculated fatigue life Tcal according to the failure criterion of 
the maximum normal stress applied under the variable-amplitude bending is closer to 
the experimental fatigue life Texp with the application of the Serensen-Kogayev 
hypothesis than with the Palmgren-Miner one. Moreover, similar results were obtained 



by the criterion of the maximum shear stress, i.e. Findley criterion with k=0, applied 
under the variable-amplitude torsion. Therefore, the Serensen-Kogayev damage 
accumulation hypothesis is chosen for the estimation of the fatigue life and the critical 
plane orientation under the multiaxial and uniaxial loadings.   

The following error parameters were used to compare the experimental macroscopic 
fracture plane orientation with the critical plane orientation 
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where N is the number of load cases (N = 8). Some criteria exhibit two critical plane 
orientations in the investigated α range (α∈<-90o, 90o>, ∆α=0.1o). In this case, for the 
failure fatigue criterion assessment only the critical plane orientation with smaller )(iEα  
is taken. Absolute difference )(iEα  and the mean value mE ,α  computed according to the 
analysed criteria are presented in Table 3. Bold face characters are used for error 
parameters smaller than 5o. Table 3 also includes the maximum normal stress σzz,max and 
the stress ratio λτσ = τzx,max/σzz,max computed according to the algorithm mentioned in the 
previous paragraph. An example distribution of the normalized damage degree 
calculated according to the max{σn} multiaxial fatigue failure criterion along the α 
angle is shown in Fig. 1.  
 

Table 3. Error parameters: )(iEα , mE ,α  computed according to the analysed criteria 
Findley, [o], k No σzz,max 

MPa λτσ 
Matake, [o]

k = 0.4,  0.2 0.4 0.8 1.6 FS, [o] max{σn},
[o] 

1 223; 280; 286 0.29 11.8 6.1 0.9 7.5 17.2 11.6 3.0 
2 184; 214; 236; 280 0.44 2.5 3.1 8.4 16.8 17.3 2.4 1.3 
3 156; 182; 212 0.68 8.3 14.0 19.2 25.3 15.7 8.4 0.3 
4 262; 272; 281; 295 0,50 22.2 18.0 14.3 7.5 0.8 28.4 7.8 
5 262 0,62 7.4 58.6 45.4 31.9 20.7 1.8 2.8 
6 250; 278 0,71 10.0 68.9 58.4 42.2 1.4 3.3 2.9 
7 0 ∞ 0.9 5.4 10.9 19.3 29.0 0.0 1.4 
8 280 0 43.5 37.8 32.6 24.2 14.6 43.5 1.5 

Eα,m: 13.3 26.5 23.3 21.8 14.6 12.4 2.6 
 

The macroscopic fracture plane orientation coincides with the maximum shear stress 
plane (the Matake criterion) only in the case of the pure torsion. In all other cases, the 
best correlation between macroscopic fracture plane orientation and the critical plane 
orientation is obtained by the criterion of the maximum normal stress. The Findley 
criterion was verified for different values of the k coefficient. With increasing the k 
value the mean error mE ,α  decreases. However, the smallest mean error for k = 1.6 is 
still larger than the result given by the maximum normal stress plane. The influence of 
the normal stress σn on the equivalent Findley stress (Eq. 5) increases with the 
increasing k value. Therefore, the Findley critical plane orientation approaches to the 



experimental fracture plane orientation when the coefficient k increases. The k 
coefficient cannot increase to infinity since with the increasing k value the damage 
degree increases.  
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Figure 1. Normalized damage degree calculated according to the max{σn} multiaxial 

fatigue failure criterion as a function of the plane orientation. 
 

After the critical plane evaluation, the fatigue failure criteria were used to calculate 
the fatigue life. The following errors parameters were applied for the fatigue life 
verification: 
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For ideal consistency of the i-th calculated fatigue life with the i-th experimental fatigue 
life, the error parameter E(i) is equal to zero. If E(i) is negative, the fatigue life estimation 
is conservative (safety). The mean error parameter Em reflects the general results 
conformity. The standard deviation error parameter Estd is the superior parameter since 
it reflects the scatter of the results and therefore gives us the information about the 
failure criterion ability to correlate the different kind of multiaxial stress states and the 
equivalent damage parameter. The second-rate parameter Em depends on the material 
constants and the stress gradient.  

Fig. 2 (a) presents the comparison between the experimental fatigue lives Texp and the 
calculated fatigue lives Tcal obtained by the maximum normal stress criterion. It is very 
interesting to notice that the scatter of the results is very small for the specimens that 
exhibit one macroscopic fracture plane orientation which coincide with the maximum 
normal stress plane. The results exposed by the criterion of the maximum shear stress 
(Fig.1 b) show very large scatter Estd = 0.69 although the mean error is very small 
Em = 0.05. The other criteria that combine the shear and normal stress/strain 
components on the critical plane (Findley, Matake, SF) are not appropriate for the steel 
analysed (Table 4). 
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Figure 2. Comparison between the experimental fatigue lives Texp and the calculated 

fatigue lives Tcal: (a) the maximum normal stress criterion, (b) the maximum shear stress 
criterion (the Findley criterion Eq. 5 for k = 0), (c) the Matake criterion Eqs 8 and 10, 

(d) the max{σn,τns} criterion. 
 
From the engineering point of view, the material fracture behaviour is not known 

before the material fatigue failure and therefore this feature cannot be used as a key in 
the selection of the proper fatigue criterion. It was assumed that this selection could be 
made by the maximum damage degree computed by two simple criteria, i.e. the 
maximum normal stress criterion (Eq. 13) and the maximum shear stress criterion (Eq. 
(5) for k=0). For each specimen, the damage degree on the critical plane is computed by 
these two criteria (max{σn,τns}) and than the fatigue life Tcal is determined by the 
highest damage degree (Fig. 2 d).  

 



Table 4. Error life parameters for the analysed multiaxial fatigue failure criteria 
Findley, k FS, w  Matake 0.0 0.2 0.4 0.8 0.2 0.4 0.8 max{σn} max{σn,τns} 

Estd 0.46 0.69 0.44 0.43 0.58 1.02 0.97 0.89 0.56 0.32 
Em -1.14 0.05 -0.60 -1.38 -2.96 -1.58 -1.60 -1.63 -0.40 -0.58 

 
 
CONCLUSIONS 
 
1. Experimental results expose two material fatigue fracture behaviour: (i) one general 

crack orientation at the macroscale were observed under all the investigated constant-
amplitude loadings (λτσ=τzx,max/σzz,max≤0.71) and under the variable-amplitude 
bending; (ii) two crack orientations were observed for the specimens subjected to 
variable-amplitude torsion. 

2. Macroscopic fracture planes under the proportional and non-proportional multiaxial 
loading for λτσ=τzx,max/σzz,max≤0.71 reveals the same behaviour as under pure 
bending. 

3. Under investigated test conditions, the experimental and calculated fatigue lives can 
be successfully correlated by two simple multiaxial fatigue failure criteria based on 
the critical plane approach, i.e. the criteria of the maximum shear or normal stress. 
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