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ABSTRACT. In the present work, a new model of the FRP-concrete or masonry interface, which accounts for 
the coupling occurring between the degradation of the cohesive material and the FRP detachment, is presented; 
in particular, a coupled interface-body nonlocal damage model is proposed. A nonlocal damage and plasticity 
model is developed for the quasi-brittle material. For the interface, a model which accounts for the mode I, 
mode II and mixed mode of damage and for the unilateral contact and friction effects is developed. Two 
different ways of performing the coupling between the body damage and the interface damage are proposed 
and compared. Some numerical applications are carried out in order to assess the performances of the proposed 
model in reproducing the mechanical behavior of the masonry material strengthened with external FRP 
reinforcements. 
 
SOMMARIO. Nel presente lavoro si propone un modello di interfaccia FRP-calcestruzzo o FRP-muratura, che 
tiene conto dell’accoppiamento tra il degrado del materiale coesivo ed il distacco del FRP; in particolare, si 
sviluppa un modello di danno non locale accoppiato interfaccia-corpo. Si presenta un modello di danno non 
locale e plasticità per i materiali quasi-fragili ed un modello di interfaccia che tiene conto del modo I, II e misto 
di danno, del contatto unilatero e degli effetti dell'attrito. Si propongono e confrontano due diversi modi di 
accoppiamento del danno del corpo e del danno d’interfaccia. Si sviluppano applicazioni numeriche per 
verificare l’efficienza del modello proposto nel riprodurre il comportamento meccanico del materiale muratura 
rinforzato con FRP.  
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INTRODUCTION 
 

he use of Fiber Reinforced Plastic (FRP) materials for the strengthening of existing concrete and masonry 
elements is growing; recently, many structures have been yet reinforced adopting FRP and several experimental 
and modeling scientific works have been developed [1-9]. The use of FRP materials applied on the external 

surface of concrete or masonry structures has created new modeling problems. One of the main problem in the use of 
FRP is the so-called detachment phenomenon, which consists in the sudden detachment of the FRP reinforcement from 
the concrete or masonry surface.  
Indeed the concrete as well as the masonry is quasi-brittle material, whose mechanical response is characterized by damage 
with softening, which is due to the development of micro-cracks. Thus, two damage effects could be presented in the 
quasi-brittle reinforced structural elements: the body damage, which develops inside the domain of the strengthened 
element, and the interface damage, which occurs at the FRP -concrete or -masonry interface. Experimental evidences 
demonstrate that the detachment of the FRP from the support material occurs often with peeling of a thin layer from the 
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external surface of the quasi-brittle material; this collapse behavior is due to the fact that the strength of the glue used to 
fix the FRP to the support is generally greater than the strength of the concrete or masonry support. From this 
observation, it can be deduced that the body damage and the interface damage cannot evolve independently one from the 
other; in other words, they are coupled [10]. 
In the present work, a new model of the FRP-concrete or masonry interface, that takes into account the coupling 
occurring between the degradation of the cohesive material and the FRP detachment, is presented. A nonlocal damage 
and plasticity model is developed for the quasi-brittle material. An interface model which accounts for the mode I, mode 
II and mixed mode of damage and for the unilateral contact and friction effects is developed. Two different ways of 
performing the coupling between the body and the interface damage are proposed. Both the approaches assume that the 
interface damage is influenced not only by the detachment stresses but also by the body damage computed on the bond 
surface. The first approach ensures that the interface damage is not lower than the body damage evaluated at the bond 
surface [11]. The second approach is based on micromechanical considerations. Some numerical applications are 
performed in order to assess the performances of the proposed coupled interface models in reproducing the mechanical 
behavior of the masonry material strengthened with external FRP reinforcements. 
 
 
A COUPLED BODY-INTERFACE DAMAGE MODEL  
 

he structural system, schematizing the FRP reinforced concrete or masonry element, is studied in the framework 
of two-dimensional plane stress elasticity, considering small strain and displacement regime. The system, consists 
in three subsystems: the body 1 , modeling the concrete or masonry element, characterized by a cohesive 

constitutive law; the body 2 , modeling the FRP reinforcement, characterized by a linear elastic behavior; the interface 
, modeling the connection between the reinforcement and the quasi-brittle material, characterized by a damaging behavior 
with friction and unilateral contact effects. 
It can be remarked that the interface   is assumed to be constituted by three layers:  
 the glue, whose mechanical properties are generally much better than those of the support cohesive material; 
 a thin layer of the support cohesive material in which, during the application of the reinforcement, the glue 

penetrates, improving its mechanical properties; 
 a further thin layer of the support cohesive material in which the detachment process occurs. 

Indeed the first two layers remain joined to the FRP after the complete detachment of the reinforcement. The interface 
damaging process, occurring in the third layer, can be due to the stress induced by the detachment action and also by the 
degradation of the support cohesive material. As a consequence, the damage occurring in the body 1  influences the 
behavior and the detachment process of the interface; on the contrary, it can be assumed that the damage of the third 
layer, generated by the detachment stresses, remains localized in the interface, i.e. it does not influences the body damage.  
In order to take into account these two possible damaging effects, an interface coupled damage model should be adopted. 
In fact, the coupling ensures that the damage evolution in the interface depends on the body damage and not vice-versa.  
The constitutive laws of the body 1 , of the interface  , neglecting the coupling between the body and the interface 
damage, and of the new proposed interface  , considering two different ways of coupling the body and interface 
degradation, are presented in the following.  
 
Body nonlocal damage model for the cohesive material  
A plastic nonlocal damage model, characterized by the following constitutive law, is considered the body 1 : 
 

      (1 ) sgn ( ) (1 )(1 sgn ( )t cD H tr D H tr           σ σ e e      (1) 
 

with σ  the stress tensor, tD
  and cD

  the damage variables in tension and in compression, respectively, the symbol 

sgn( )  indicating the sign of the variable  ,  H   the Heaviside function, i.e.   1H    if 0  , otherwise   0H   , and 
σ  the effective stress defined as: 

 

  p       σ C ε ε C e          (2) 
 

where 
C  is the elastic tensor, 

ε , p
ε  and 

e  the total strain, the plastic strain and the elastic strain tensors, respectively. 
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The following plastic yield function is introduced: 

         2 2

1 2 1 2y y y yf A B        

 

         
       (3) 

 

with 1  and 2  the principal stresses of the effective stress tensor, y  the yield stress and A  and B  material parameters. 
The evolution laws are set as: 
 

 

0
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           (4) 

 

with   the accumulated plastic strain. 
The evolution law is completed with the Kuhn-Tucker conditions: 
 

    0, 0, 0f f      
         (5) 

 

As the softening constitutive law (1) is introduced, localization of the strain and damage could occur. In order to 
overcome this pathological problem, to account for the correct size of the localization zone and, also, to avoid strong 
mesh sensitivity in finite element analyses, a nonlocal constitutive law is considered. In particular, an integral nonlocal 
model is adopted for the damage in compression and in tension.  
The evolution of the compressive damage variable is governed by the following law: 
 

       3 2

3 2

2 3
max min 1,c c c
history

u u

D D D  
 

              (6) 
 

with u  the final damage threshold in compression and    the nonlocal accumulated plastic strain, evaluated at the point 
x , as: 

 

  
 

   
1

1

1
d

d
  


 
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  

x x y y
x y

       (7) 

 

where y  is a typical point of the body 1  and the weight function   x  is set as: 
 

  
2

2
1

R





 

x y
x           (8) 

 

with R  the radius of the nonlocal integration domain and the symbol 


  denoting the positive part of the number  . 
The evolution of the tensile damage parameter is governed by an exponential nonlocal law, set as:  
 

   
 0

0max min 1,
eqk

eq
t t t

history
eq

e
D D D

  


 
  




         (9) 

 

with  eq
 x  the equivalent nonlocal strain, evaluated at the point x  as: 

 

  
 

   
1

1

1
eq eq d

d
  
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x x y y
x y

       (10) 

 

and eq
  the equivalent strain introduced as [11]: 

 

 
2 2

1 2eq  
 

            (11) 
 

with 1  and 2  the local principal strains. 
Moreover, the following condition is introduced: 
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 t cD D             (12) 
 

in order to prescribe that the damage in tension should not be lower than the damage in compression. 
 
Interface damage model without coupling  
A phenomenological interface model based on the micromechanical idea, developed in [13] and [14], is proposed. The 
displacement fields of the two joined bodies are denoted as 1u  and 2u , while the relative displacement at the typical point 

x  on the interface   is defined as      1 2    s x u x u x .  

At the point x  the reference area is considered; at the micromechanical level, the reference area is split in the undamaged 
and damaged part. 
The damage parameter D  is introduced as the ratio between the damaged area with respect to the reference area; it can 
vary from zero to one: 0D   corresponds to the undamaged state, while 1D   corresponds to the completely 
damaged state. The stress-relative displacement relationship is formulated:  
 

 ( )D         σ K s c p          (13) 
 

where K  is the stiffness matrix, c  is the unilateral contact vector and p  is the sliding friction vector. 

A local coordinate system on the interface  ,T Nx x , where the indices N  and T  indicate the normal and the tangential 
directions of the interface, respectively, is introduced. In this coordinate system, the stiffness matrix, the unilateral contact 
vector and the sliding friction vector are represented as:  
 

 
0 0

( )
0 0
N N

N
T T

K s
H s

K p
      
      

    
K c p       (14) 

 

In order to define the evolution of the inelastic slip relative displacement, the stress given in equation (13) is rewritten in 
the following form:  
 

  (1 )d D        σ σ K c p          (15) 
 

defining the contact-frictional stress d
σ  as: 

 

   d D       σ K s c p          (16) 
 

It is assumed that the stress d
σ  governs the evolution of the inelastic slip relative displacement. In particular, the classical 

Coulomb yield function is introduced: 
 

  d d N d T d N d T     


   σ         (17) 

 

where   is the friction coefficient and the symbol d N

denotes the negative part of the contact-frictional stress. 

The following non-associated flow rule is considered for the evolution of the components of the vector p : 
 

 

00

d T

d T d T
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d

 
 



  
      

   
   

p            (18) 

 

together with the Khun-Tucker conditions: 
 

    0, 0, 0d d     σ σ           (19) 
 
It can be remarked that the frictional problem can be activated only when the damage is greater than zero. In fact, only in 
this case the microcracks, in which the unilateral and friction effects can occur, are present at the interface. 
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About the evolution of the damage parameter D , a model which accounts for the coupling of mode I of mode II of 
fracture is considered. In fact, the two quantities N  and T , defined as the ratios between the first cracking relative 

displacement 0
Ns  and 0

Ts  and the full damage relative displacement f
Ns  and f

Ts , are introduced: 
 

 
0 0 0 0 0 0

,
2 2

N N N T T T
N Tf f

cN cTN T

s s s s

G Gs s

 
             (20) 

 

where 0
N  and 0

T  are the peak stresses corresponding to the first cracking relative displacement and cNG  and cTG  are the 
specific fracture energies in mode I and mode II, respectively. Then, the parameter  , which relates the two modes of 
fracture, is defined as follows: 
 

 

2 2

2 2

N T
N T

s s
   

s s            (21) 

 

where  TN Ts s


s . The relative displacement ratios are introduced as: 
 

 0 0

N T
N T

N T

s s
Y Y

s s
            (22) 

 

and the equivalent relative displacement ratio is considered: 
 

 
2 2
N TY Y Y             (23) 

 

Finally, the damage parameter is assumed to be a function of the history of the relative displacement as follows: 
 

   max 0, min 1,
history

D D            (24) 
 

where the quantity D
  is expressed by the relationship : 

 

  
1

1

Y
D

Y 
 



            (25) 

 
Interface damage models with coupling  
A interface coupled model, obtained considering different ways of coupling the body and the interface damage, is 
proposed. In the first case the coupling between the body damage and the interface damage is performed ensuring that 
the interface damage is not lower than the body damage computed on the bond surface [11]: 
 

       max ,ID D D x x x          (26) 
 

with  ID x  the coupled interface damage evaluated in a point x  of the interface. 

 

 
Figure 1: Representative area of the third layer of the interface. 
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In the second case, a representative area A  of the interface and, in particular, of the third layer made of cohesive support 
material, is assumed to be decomposed in two parts, as represented in Fig. 1. In fact, when the body damage occurs, it 
induces the presence of a microfracture in the representative area of the surface, characterized by a corresponding area 

tA D A  . Because of the presence of the microcrack, in A  the stress Wσ  is equal to zero if the microcrack is open and 
it is different from zero when it is closed. In the remaining part of the representative area, characterized by an area 

 1 tA D A   , it is assumed that the mechanical response is governed by the constitutive model described by equations 

(13)-(25). Thus, the overall constitutive response of the coupled interface is obtained as:  
 

  1I W
t tD D    σ σ σ           (27) 

 

with σ
 
 given by equation (13) and Wσ  defined as: 

 

  W    σ K s c           (28) 
 

where c  is defined by the second equation of the relations (14). 
 
 
NUMERICAL APPLICATIONS 
 

umerical procedures for solving the equations governing the mechanical response of the body-interface nonlocal 
damage models, described in the previous section, are developed. 
A step by step time integration algorithm is adopted in order to solve the evolutive equations of the proposed 

body-interface model. In particular, the time integration is performed adopting a backward-Euler implicit procedure. The 
proposed numerical procedure is implemented in the finite element code FEAP [15]. In particular, two dimensional plane 
stress four node quadrilateral elements are adopted to model the bodies 1  and 2  and four node interface elements are 
developed to model the interface  .  
Some numerical applications are carried out in order to assess the efficiency of the proposed coupled nonlocal damage 
interface-body model in describing the detachment phenomenon of the FRP reinforcement from the cohesive material. 
In particular, in the following applications Model 1 indicates the interface model, in which the coupling is taken into 
account assuring that the interface damage is not lower than the body damage computed on the bond surface, while 
Model 2 indicates the formulation developed on the basis of a simplified micromechanical analysis. 
The properties of the materials adopted in the numerical applications are set on the basis of the experimental detachment 
tests performed on masonry elements reinforced by FRP [16]: 

- Body 1  

 

1 1
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- Body 2  

 2 2160000 MPa 0.3E            (30) 
- Interface   
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
 
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           (31) 

where 1E , 1 , 2E  and 2  are the Young modulus and the Poisson coefficient of the body 1  and 2 , respectively. 
In particular, first a simple tensile test is performed to show how the response of the interface can be significantly 
influenced by the damage occurring in the body 1 . Then, the maximum detachment force is evaluated for different 
values of the adhesion lengths and of the initial values of the body damage.  
 
Tensile test 
The geometry and loading condition of the scheme considered to perform the tensile test are shown in Fig. 2. The 
geometrical parameters are 500 mm 49 mmb h   and an unit thickness is adopted.  
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Figure 2: Scheme of the uniaxial test. 

 
In order to investigate the influence of the damaging behavior of the body 1  on the tensile mechanical response of the 
interface and, as a consequence, of the whole structure, three analyses are developed considering different values of the 
initial threshold damage strain 0  and keeping constant the fracture energy cG ; in particular it is set: 
Case 1: 0 0.00016    
Case 2: 0 0.00026   
Case 3: 0 0.00036   
The three analyses are performed considering as interface model the two coupled damage approaches previously 
presented (Model 1 and Model 2).  
In Fig. 3 and Fig. 4, the numerical response obtained adopting the Model 1 and the Model 2 are shown, respectively. The 
results reported in the graphics of these figures are plotted with a dotted line for Case 1, with a dashed line for the Case 2 
and with a solid line for the Case 3. Furthermore, the average tensile stress is introduced as q   and the average strain 
in the body 1 is set as /v h    with v  the relative vertical displacement between the two opposite edges of the body 

1 . 
The computations are performed adopting an arc-length technique and considering the relative normal displacement   at 
the interface as control parameter. 
With reference to Fig. 3, it can be noted that in the Case 3 the mechanical response of the structure is strongly influenced 
only by the softening behavior of the interface as in this analysis the damage does not occur in the body. In fact, the 
tensile interface response is equal to the constitutive interface law and the body is subject to the elastic unloading when 
the interface starts to damage. In the other two cases, the tensile mechanical response of the structure depends on the 
coupling of the body and interface damage. In fact, after the achievement of the peak stress, which coincides with the 
tensile strength of the body, the softening branch depends on the evolution of the damage in the body until the interface 
damage, governed by the relative displacement, becomes higher than the body one at the interface. At this point of the 
analysis the softening tensile response is due to the development of the interface damage governed by the relative 
displacement. 
From Fig. 4, it is observed that in the Case 3 the body does not develop damage and for this reason the softening 
response of the mechanical system depends only on the evolution of the damage interface. With reference to Fig. 3 and 
Fig. 4, it appears evident that in the Case 3 the analyses, performed adopting the proposed coupled interface formulations 
(Model 1 and Model 2), lead to the same numerical results. In the Case 1 and in the Case 2, the body damage occurs 
before the interface one; the maximum tensile stress is lower than the value obtained in the Case 3 and it is equal to the 
tensile strength of the body, as it is achieved in the Model 1. In the Case 1 and 2 the softening response, obtained 
adopting the Model 1 and 2, presents some significant differences. In fact, the results carried out adopting the Model 1, 
show that the softening behavior is strongly influenced by the evolution of the body damage until the interface damage 
becomes higher than the body one. From this point of the analysis, the body damage does not increase anymore and the 
softening behavior is only governed by the evolution of the interface damage. On the other hand, in the results obtained 
considering the Model 2, the softening behavior is strongly influenced by the body damage during the whole detachment 
process, also when the interface damage becomes to develop and the body damage does not evolve anymore. Thus, the 
degradation process results faster for the Model 2 than for the Model 1. 
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(a) 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
(c) 

Figure 3: Numerical results obtained adopting the Model 1.
a) Mechanical response of whole structure;  
b) Mechanical behavior of interface;  
c) Body tensile response. 

 Figure 4: Numerical results obtained adopting the Model 2. 
a) Mechanical response of whole structure;  
b) Mechanical behavior of interface;  
c) Body tensile response.

 
 
Maximum decohesion force 
The computations are performed considering the scheme and the geometry illustrated in Fig. 5. The FRP laminate (body 

2 ) is bonded to a masonry support (body 1 ) made of two clay bricks separated by an unitary layer of mortar. The FRP 
laminate is subjected to tensile loading.  
 

 
 

Figure 5: Scheme of the FRP-masonry brick detachment test. 
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All computations are developed assuming two interface damage models: the uncoupled model, which does not take into 
account the interaction between body and interface degradation, and the coupled one, in which the body damage 
influences the interface damage according to the formulation developed in the Model 1.  
In Fig. 6 the value of maxF  is plotted versus the adhesion length bL . Note that each curve is denoted by a symbol made of 
a letter and a number. The letter U is used to indicate that the analysis is performed adopting the uncoupled damage 
model, while the letter C is used to characterize the analysis developed with the coupled damage theory (Model 1). The 
number near the letter indicates the initial damage level uniformly assigned at the body 1 . In particular, the number 1, 2, 
3, and 4 corresponds to the damage value equal to 0, 0.5, 0.7, and 0.9, respectively. 
The numerical results reported in Fig. 6 emphasize that, increasing the adhesion length bL , the value of maxF  grows till the 
optimal adhesion length eL  is reached, after which maxF  remains constant. 
In particular, from the type U curves marked by the discontinuous line, it can be noted that: 
 for higher values of the damage state of the body 1  the optimal adhesion length eL  increases; 

 for higher values of the damage state of the body 1  the maximum value of maxF  is quite constant and, in some cases, 
it tends to increase; 

 for very high values of the damage state of the body 1  the maximum value of maxF  decreases. 

While the first result is absolutely expected, the second one appears physically unacceptable, as it implies that even if the 
support material is more damaged, equal or higher values of the forces can be transmitted from 2  to 1 . On the 
contrary, only when the damage level of the body 1 becomes very high the force decreases. This strange effect is due to 
the uncoupled damage evolution of the body and of the interface damage state.  
With reference to the all type C curves marked by the solid line, the following observations can be remarked: 
 for higher values of the damage state of the body 1  the optimal adhesion length eL  increases, as in the case of the 

uncoupled model; 

 for higher values of the damage state of the body 1  the maximum value of maxF  decreases. 

This last result appears much more reasonable and, as a consequence, more reliable with respect to the one obtained 
adopting the uncoupled damage model, as it does not suffer from the physical unacceptable effect found in the uncoupled 
one. 

 
Figure 6: Decohesion force maxF  versus adhesion length bL . 
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becomes higher than the body one. From this point of the analysis, the body damage does not increase anymore and the 
softening behavior is only governed by the evolution of the interface damage. On the other hand, in the results obtained 
considering the Model 2, the softening behavior is strongly influenced by the body damage during the whole detachment 
process, also when the interface damage becomes to develop and the body damage does not evolve anymore. Thus, the 
degradation process results faster for the Model 2 than for the Model 1. 
Moreover, the numerical application show also the differences between the response of the coupled and uncoupled 
interface model. In particular, the results obtained using the coupled model appears much more reasonable and, as a 
consequence, more reliable with respect to the one obtained adopting the uncoupled damage model, as it does not suffer 
from the physical unacceptable effect found in the uncoupled one. 
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