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ABSTRACT. This study addresses further developments of the evaluation procedure for J and CTOD in 
common fracture specimens based upon the  -method.  Very detailed non-linear finite element analyses for 
plane-strain models provide the evolution of load with increased load-displacement to define the relationship 
between plastic work and crack-tip driving force ( J  and CTOD) from which the  -values are derived. Further 
analyses based on the load separation method are also conducted to define alternative  -values against which 
factors   evaluated from plastic work can be compared. The analyses reveal that  -factors based on load-line 
displacement (LLD) are sensitive to plasticity changes at locations remote from the crack-tip region. Overall, the 
present results provide a strong support to use  -based procedures in toughness measurements for 
conventional SE(T) fracture specimens. 
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INTRODUCTION 
 

tandardized techniques for crack growth resistance testing of structural steels, including ASTM E1820 [1] standard, 
routinely employ three-point bend SE(B) and compact tension C(T) specimens containing deep, through cracks 
( Wa 0.45~0.5). The primary motivation to use deeply cracked specimens is to guarantee conditions leading to 

crack growth under high crack-tip constraint with limited-scale plasticity. For these specimens, the advancing near-tip 
region over which elastic unloading and strongly nonproportional loading takes place is well contained within the J -
dominance zone ahead of the crack tip [2]. However, a variety of crack-like defects are most often surface cracks formed 
during in-service operation and exposure to aggressive environment or during welding fabrication. Structural components 
falling into this category include girth welds made in field conditions for high pressure piping systems and steel catenary 
risers.  These crack configurations generally develop low levels of crack-tip stress triaxiality which contrast sharply to 
conditions present in deeply cracked specimens [3]. Recent defect assessment procedures now under development 
advocate the use of geometry dependent fracture toughness values so that crack-tip constraint in the test specimen closely 
matches crack-tip constraint in the structural component. In particular, fracture toughness values measured using single 
edge notch tension (SE(T)) specimens appear more applicable for characterizing the fracture resistance of pressurized 
pipelines and cylindrical vessels than standard, deep notch fracture specimens under bend loading [4, 5]. 
Current evaluation procedures for J  focus primarily on developing estimation schemes for its plastic component, 
denoted pJ . These methodologies have evolved essentially along two lines of development: (1) estimation procedures 

relating the plastic contribution to the strain energy and J ; (2) fully plastic descriptions of J  based upon HRR-
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controlled crack-tip fields and limit load solutions. The first approach employs a plastic  -factor introduced by Sumpter 
and Turner [6] to relate the macroscale crack driving forces ( J and CTOD) to the area under the load versus load line 
displacement (or crack mouth opening displacement) for cracked configurations. Because of its relative ease with which 
the load-displacement records can be measured in conventional test specimens, the method is most suited for testing 
protocols measuring fracture toughness such as ASTM E1820 [1]. The second approach derives from previous work of 
Kumar et al. [7] to introduce an estimation procedure for pJ  applicable to elastic-plastic materials following a power 

hardening law such as the Ramberg-Osgood (R-O) model [8]. Here, pJ  is expressed in the general form 

    1
01 ,,  n

p nWahJ   where a  is the crack size, W denotes the component width,   represents a characteristic 

length for the cracked component, n  is the R-O strain hardening exponent,   defines a generalized load and 0  is the 

corresponding (plastic) limit load. Factor 1h  represents a nondimensional parameter dependent upon crack size, 

component geometry and strain hardening properties which simply scales pJ  with   1
0

 n . The method became 

widely known as the EPRI methodology and has later been expanded by Zahoor [9] to include additional geometries such 
as circumferentially and axially cracked pipes under tensile and bending loads. Another related approach to determine J  
from load-displacement records which shares much in common with the previous outlined methodology based on  -
factors adopts a load separation analysis proposed by Paris et al. [10] to evaluate  for conventional fracture specimens. 
Here, a key assumption is that load can be represented as the product of a crack geometry function (G ) and a material 
deformation function (D ) so that factor  WaG . Sharobeam and Landes [11] employed the load separation 
concept to develop an experimental procedure to determine  -factors for selected crack geometries. 
While  -based procedures have proven very effective in estimation schemes for J  and CTOD based on experimentally 
measured load-displacement records using deeply cracked specimens, there still exist some differences in  -values for low 
constraint fracture specimens. In particular, Sharobeam and Landes [11] have arrived at a set of solutions for  -values 

which is independent of the Wa -ratio. Because of the increased utilization of geometry dependent specimens in fracture 
toughness measurements and defect assessment procedures applicable to low constraint crack configurations, these 
differences may concern potential users and experimentalists who rely on  -based methods to measure J  and CTOD 
for these fracture specimens. Since a number of design and construction codes, including welding and material 
specifications, define minimum values of fracture toughness that need to be achieved to comply with their acceptance 
criteria, differences in the measured fracture toughness values can result in large economic consequences as well as 
unconservative structural integrity assessments. 
Motivated by these observations, this study addresses further developments of the evaluation procedure for J and CTOD 
in common fracture specimens based upon the  -method.  Very detailed non-linear finite element analyses for plane-
strain models provide the evolution of load with increased load-displacement to define the relationship between plastic 
work and crack-tip driving force ( J  and CTOD) from which the  -values are derived. Further analyses based on the 
load separation method are also conducted to define alternative  -values against which factors  evaluated from plastic 
work can be compared. The analyses reveal that  -factors based on load-line displacement (LLD) are sensitive to 
plasticity changes at locations remote from the crack-tip region. Overall, the present results provide a strong support to 
use  -based procedures in toughness measurements for conventional SE(T) fracture specimens. 

 
 
ESTIMATION PROCEDURES FOR THE J INTEGRAL AND CTOD 
 

his section provides the essential features of the analytical framework needed to determine J  and CTOD for 
common fracture specimens based upon experimental measurements of load-displacement records with particular 
emphasis on the SE(T) configuration. The presentation begins with the J -integral and CTOD analysis  for a 

cracked body based upon the plastic work measured from load-displacement records, LLD ( ) and CMOD (V ). 
Subsequent development focuses on a related procedure to evaluate J  based upon the load separation analysis for 
cracked bodies. The description that follows also includes a J -integral evaluation scheme using multispecimen 
measurements of plastic work which enables direct comparisons with numerical J -values derived from domain integral 
procedures. 
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Experimental J and CTOD measurements based on plastic work 
The energy release rate definition of J  for a cracked body with thickness B  illustrated in Fig. 1 provides the basis to 
estimate the J -integral for a stationary crack based upon measured load-load line displacement records. Consistent with 
deformation theory, the path-independent J -integral is given by [12-14]  
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where P  is the applied load,   is the load-line displacement (LLD) and a  is the crack size. Here, it is understood that 
the above integrals correspond to load control and displacement control conditions. 
 

 
                                                   (a)                                                                                       (b) 
 

Figure 1: (a) Arbitrary cracked body with thickness B subjected to remote loading; (b) Definition of the plastic area under the load-
displacement curve. 
 
Upon consideration of the elastic, e , and plastic, p , components of the load line displacement given by 
 

pe                 (2) 
 

and manipulating the first integral term of Eq. (1), J  can be expressed as 
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where eJ  and  pJ  are the elastic and plastic components. Here, eJ  is conveniently defined by the energy release rate for 

a linear elastic cracked body under Mode I deformation in the standard form 
 

E

K
J I
e 


2
               (4) 

 

where IK  denotes the (Mode I) elastic stress intensity factor for the cracked configuration and )1( 2 EE  with E  
and   denoting the (longitudinal) elastic modulus and Poisson's ratio. 
The plastic component, pJ , is derived from adopting the approach proposed by Sumpter and Turner [6] building upon 

earlier work of Rice et al. [15] to relate the J -integral to the area under the load versus load-line displacement. Fig. 1(b) 
illustrates the essential features of the estimation procedure for pJ  based upon LLD records measured using SE(T) 
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fracture specimens; the method is equally valid for other crack configurations. The approach simply relates the plastic 
contribution to the strain energy (due to the crack) and J  in the form [12] 
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where LLD
pA  is the plastic area under the load versus load line displacement, b  is the uncracked ligament ( aWb   

where W  is the specimen width and a  is the crack length). To arrive at Eq. (5), the equality dbda   was used. Factor  
LLD
J  introduced by Sumpter and Turner [6] represents a nondimensional parameter which relates the plastic contribution 

to the strain energy for the cracked body with J  and is assumed to be a function of the flawed configuration and 
independent of loading [12]. 
The specimen response (and, consequently , the plastic area under the load versus displacement curve) illustrated in Fig. 
1(b) can also be defined in terms of crack mouth opening displacement (CMOD or V ) data. For definiteness, the 

corresponding J -factor is denoted  CMOD
J  which enables expressing pJ  as 
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The previous framework also applies when the CTOD is adopted to characterize the crack-tip driving force. Following 
the earlier analysis for the J -integral and using the connection between J  and the crack-tip opening displacement ( ) 
[16,17] given by 
 

ysm

J


                 (7) 

 

in which m  is a dimensionless constant, a formally similar expression to Eq. (3) is employed to yield 
 

pe                  (8) 
 

where the elastic component, e , is now given by 
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and the plastic component, p , is expressed as 
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where factor CMOD
  represents a nondimensional parameter which describes the effect of plastic strain energy on the 

applied CTOD. In the above expressions, ys  is the material's yield stress, ssym  is a plastic constraint factor under small 

scale yielding (SSY) conditions [18] and parameter m represents a proportionality coefficient often used to relate to total 
value of J  to the total value of CTOD and strongly dependent on material's strain hardening [16, 17]. When the CTOD 
is evaluated based on the plastic hinge model such as in BS 7448 standard [19], factor ssym  is often assigned a value of 2. 

 
Load Separation Analysis 
An alternative approach to evaluate the plastic component of the J -integral, , from laboratory testing of conventional 
fracture specimens derives from the load separation method proposed by Paris et al. [10]. Based upon dimensional 
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analysis arguments, they proposed a separable form for the load, P , represented as the product of a crack geometry 
function (G ) and a material deformation function (D ) expressed by 
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To arrive at a convenient procedure to evaluate factor J  based on the load separation concept, the above Eq. (11) is 

used in conjunction with the second integral of Eq. (1) so that the integral form of pJ  resolves after some manipulation 

to 
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By noting that the material deformation function, D , does not depend on crack size, Eq. (12) can be rearranged to define 

the plastic factor LLD
J  in the form 
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where it is understood that ab   and J  depends only on the crack geometry function G . 
The above resulting form of the load separation model to evaluate factor  expressed by the above Eqs. (13) requires the 
knowledge (or, at least, a convenient choice) of the function G  for the cracked configuration under analysis. Sharobeam 
and Landes [11] developed an experimental procedure to determine factor J  for planar fracture specimens in which the 
crack geometry function G  is described  in terms of load-plastic displacement records for two specimens made of the 
same material and identical geometry and overall size but different crack length. Their analyses motivated the introduction 
of a separation parameter, kS , defined as a ratio of load for specimens with different crack ligament measured at a fixed 

value of plastic displacement, p , in the form 
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where  WbP k  and  WbP 0  are the load for specimens with crack ligament size kb  and 0b  in which subscript "0" 

represents a reference specimen size. For definiteness, this quantity is denoted LLD
kS . 

Following Sharobeam and Landes [11], introduction of parameter kS  allows a straightforward manner to determine the 

crack geometry function  WbG . Invoking the separable form of the load, P , given by previous Eq. (11), and noting 

again that the material deformation function, D , does not depend on crack size for a given plastic displacement, p  , the 

above Eq. (14) can be rewritten as 
 

   
    

p

p

WbG
WbG

WbG
WbS k

k
k 













 1

0

        (15) 

 

where   
p

WbG  0  remains constant once a reference specimen size is adopted. 

Consequently, the plastic   factors corresponding to LLD records can be expressed in terms of parameter kS  in the 
form 
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in which now evaluation of factor LLD
J  requires the knowledge (or, at least, a convenient choice) of the function  for the 

cracked configuration under analysis. In subsequent section, a load separation analysis is explored for plane-strain models 
of pin-loaded and clamped SE(T) models to arrive at a set of  -values with increased Wa -ratios for these specimens 

based on different fitting functions for kS . 
 
J evaluation procedure using multispecimen measurements 
A fundamental approach related to both of those previously described procedures to evaluate the J -integral derives 
directly from considering the variation in potential energy for a cracked body due to virtual crack extension. This concept 
forms the basis of the original work conducted by Begley and Landes [20] in which J  was introduced as a fracture 
criterion. 
Development of the evaluation procedure for J  begins by considering its energy interpretation in the form 
 

da

dU

B
J

p1
            (17) 

 

where pU  is the potential energy for the cracked body and a  is the crack size. By considering fracture specimens with 

identical geometry and configuration (W  and B ) but with different initial crack lengths, the area under the load-
displacement curve for each specified displacement i  illustrated in Fig. 2(a) enables the construction of the relationship 
between the potential energy and crack size as schematically represented in Fig. 2(b). Using the energy release rate 
definition expressed by previous Eq. (17), the  J -integral with increased values of   for a given crack size, a , is simply 
evaluated from the derivative of pU  with respect to the crack size as evident from Fig. 2(b). 

Begley and Landes [20] adopted the previously outlined procedure to determine J  from experimentally measured load-
displacement records using an extensive series of test specimens for an A533 pressure vessel steel at room temperature. 
The method requires testing a large number of specimens which makes routine laboratory evaluation of J a rather 
cumbersome task. Nevertheless, this approach will be pursued here in a numerical framework rather than an experimental 
procedure to evaluate J  from load-displacement records against which the line integral definition of J  can be compared. 
 

 
                                                                  (a)                                                                                 (b) 

 
(c) 

 

Figure 2: Scheme of the multispecimen procedure to evaluate the  -integral proposed by Begley and Landes [20]. 
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COMPUTATIONAL PROCEDURES AND FINITE ELEMENT MODELS 
 
Plane-strain models of SE(T) fracture specimens 

onlinear finite element analyses are described for plane-strain models of a wide range of conventional 1-T SE(T) 
fracture specimens (thickness B 25.4 mm) under pin-loaded and clamped end conditions with BW 2. The 

analysis matrix includes SE(T) specimens having Wa 0.1 to 0.7 with increments of 0.05, WH 6 (pin-

loaded end) and WH 10 (clamped ends). Here, a  is the crack size specimen, W  is the specimen width and H  is the 
distance between the pin loading or clamps. Fig. 3 shows the geometry and specimen dimensions for the analyzed crack 
configurations with different loading conditions, pin-loaded ends vs. clamped ends; these specimens are denoted as 
SE(T)P and SE(T)C. 
Fig. 4 shows the finite element models constructed for the plane-strain analyses of the pin-loaded SE(T) specimen having 

Wa 0.5. All other crack models have very similar features. A conventional mesh configuration having a focused ring of 

elements surrounding the crack front is used with a small key-hole at the crack tip; the radius of the key-hole, 0 , is 
0.0025 mm to enhance computation of J -values at low deformation levels. Previous numerical analyses [4-5] reveal that 
such mesh design provides detailed resolution of the near-tip stress-strain fields which is needed for accurate numerical 
evaluation of J -values. Symmetry conditions permit modeling of only one-half of the specimen with appropriate 
constraints imposed on the remaining ligament. A typical half-symmetric model has one thickness layer of ~1400 8-node, 
3D elements (~3000 nodes) with plane-strain constraints ( w 0) imposed on each node. 
These finite element models are loaded by displacement increments imposed on the loading points to enhance numerical 
convergence and to provide a closer correspondence with the actual experimental conditions at the specimen ends. 
Further, the numerical analyses for the pin-loaded specimen incorporate the contact interaction between the loading pin 
(represented as a rigid cylinder) and the specimen (see Fig. 4). 
 

 
                                                                     (a)                                                        (b) 

 

Figure 3: Geometries for analyzed SET fracture specimens: (a) Pin-loaded specimen; (b) Clamped specimen. 
 

 
 

Figure 4: Finite element models used in plane-strain analysis of the pin-loaded SE(T) specimen with Wa 0.5 and WH 6. 
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Material Models 
Evaluation of factor   requires nonlinear finite element solutions which include the effects of plastic work on J  and the 

load-displacement response. These analyses utilize an elastic-plastic constitutive model with 2J  flow theory and 
conventional Mises plasticity in small geometry change (SGC) setting. The numerical solutions employ a simple power-
hardening model to characterize the uniaxial true stress ( ) vs. logarithmic strain ( ) in the form 
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where ys  and ys  are the reference (yield) stress and strain, and n  is the strain hardening exponent. The finite element 

analyses consider material flow properties covering typical structural, pressure vessel and pipeline grade steels with 
E 206 GPa and  0.3:  n 5 and ysE  800 (high hardening material), n 10 and ysE  500 (moderate 

hardening material), n 20 and ysE  300 (low hardening material). These ranges of properties also reflect the upward 

trend in yield stress with the increase in strain hardening exponent, n , characteristic of ferritic structural steels, including 
pipeline steels. 
 
Computational procedures 
The finite element code WARP3D [21] provides the numerical solutions for the plane-strain analyses  reported here. The 
code enables conventional linear elastic analysis and incorporates both a Mises ( 2J ) constitutive model in both small-
strain and finite-strain framework.  Evaluation of the J -integral derives from a domain integral procedure [22] which 
yields J -values retaining strong path independence for domains defined outside the highly strained material near the 
crack tip. Evaluation of the numerical value of CTOD follows the 90 procedure [18] to the deformed crack flanks. To 
avoid potential problems with the CTOD computation related to the severe mesh deformation at the crack tip, the 
approach adopted here defines the value of half the crack tip opening displacement as the intercept between a straight line 
at 45 from the crack tip (which is obtained by a linear regression of the corresponding nodal displacements ) and a 
straight line passing through selected nodes at the crack flank.  
The numerical simulation of the pin loading process involves the contact interaction between the loading pin (represented 
as a rigid cylinder) and the specimen. WARP3D uses a simple penalty method to enforce displacement constraints in the 
solution of the finite element model which creates springs at the contact points. The spring stiffness corresponds to the 
penalty parameter, while the amount of remaining penetration corresponds to the error in the enforcement of the 
constraint. WARP3D adds each spring stiffness into the corresponding element stiffness matrices instead of directly into 
the global stiffness matrix. The research code FRACTUS2D [23] is employed in all computations to determine factors J  

and   as well as the load separation analyses and application of the multispecimen procedure for the cracked 
configurations described here. 
 
 
RELATIONSHIP BETWEEN J AND PLASTIC WORK  
 

efore undertaking evaluation of factors J  and   for the analyzed crack configurations considered next, it is 
instructive to first examine the ability of the  -factor in describing the relationship between the strain energy for 
the cracked body and J . The question to be addressed is under what conditions the potential energy change for a 
cracked body (based upon which J  is defined) is equivalent to the plastic work for the stressed cracked body 

described in terms of the area under the load-displacement curve (based upon which factor   is defined). The energy 
release rate definition of J  given in previous section (see Eq. (1)) represents a mechanical energy balance between the 
work done by external forces and the strain energy due to the crack. It becomes clear that any plasticity development well 
outside the crack-tip region provides an additional contribution to the strain energy for the cracked body which therefore 
affects the plastic area under the load-displacement curve. Under such conditions, the total plastic work does not 
necessarily translate into a corresponding value of J  for the cracked body. 
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To understand the J  vs. plastic work relation for the cracked configurations analyzed here, consider application of the 
multispecimen procedure outlined before to evaluate the J -integral for the SE(T) fracture specimens under pin load and 
clamp conditions described previously. Figs. 5 and 6 compare the variation of J  with load line displacement (LLD or  ) 
for selected specimen configurations which include pin load ( WH 6) and fixed end ( WH 10) conditions with crack 

sizes in the range: Wa 0.1, 0.2, 0.3 and 0.5. The study focuses on the material with strain hardening exponent n 10 
but remains essentially valid for other hardening properties; to conserve space, the results for the n 5 and 20 materials 
are not shown here. In these plots, the J -values determined directly from the finite element analysis, DJ , based upon a 
domain procedure provide a baseline value against which the J -values evaluated from the multispecimen strategy 
outlined previously, MJ , are compared.  
 

 
                                                               (a)                                                                                (b) 

 

 
                                                               (c)                                                                                (d) 
 

Figure 5: Evolution of J  with load-line displacement ( ) for pin-load SE(T) specimen with WH 6 and selected Wa -ratios 
with n 10 material. 
 
The behavior exhibited by the J - trajectories displayed in these plots is consistent with the previous observations about 
the equivalence between the strain energy for the cracked body and J . For the deeply cracked geometries ( Wa 0.5), 
the J -values computed using the line-integral definition on a remote contour ahead of crack tip are essentially the same 
as the corresponding values derived from Eq. (17). With decreased crack size, the J -values defined by Eq. (17) increase 
by an amount ranging from approximately 10% when Wa 0.3 to 30% when Wa 0.1 for the pin-loaded specimen; 
these differences are similar for the clamped specimen, albeit somewhat smaller. Very similar trends were observed for 
additional analyses using other material properties ( n 5 , 20); as already mentioned, these results are not shown here in 
interest of space.  
Given the inherent differences between both procedures and the relative role played by meshing and numerical details in 
the computed J -values, the observed deviations for the specimen geometries with Wa 0.3 and 0.2 can still be 
considered acceptable in routine engineering applications. However, the picture is relatively more complex in the case of 
the very shallow cracked specimen with Wa 0.1. Clearly, the results for this specimen geometry raise concerns as to the 
effectiveness of the  -method in accurate evaluation of J  (and, consequently, CTOD) in current testing protocols for 
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toughness measurements and defect assessment applications based upon SE(T) fracture specimens with very shallow 
cracks ( Wa 0.2). 
 

 
                                                               (a)                                                                                (b) 
 

 
                                                               (c)                                                                                (d) 
Figure 6: Evolution of J  with load-line displacement ( ) for clamped SE(T) specimen with WH 10 and selected Wa -ratios 
with n 10 material. 
 
 
J AND CTOD ESTIMATION PROCEDURE BASED ON PLASTIC WORK  
 

his section describes the results of the extensive plane-strain analyses performed on models of the pin-loaded and 
clamped SE(T) described previously. The analyses cover nondimensional  -factors based upon P -CMOD and 

P -LLD records for the SE(T) fracture specimens with WH 6 (pin-loaded ends) and WH 10 (clamped 
ends). 
Figs. 7-9 provide the  -factors corresponding to J  and CTOD for the pin-loaded and clamped SE(T) specimens with 

varying Wa -ratios. In these plots, the solid symbols correspond to the compute  -values whereas the lines represent 
fitting curves (using a 5-th order polynomial) to the numerical data. Based on the previous findings discussed before in 
which the effectiveness of the  -method in accurate evaluation of J  (and CTOD) for very shallow cracked specimens 

was questioned, these fitting curves are provided only in the range 0.2  Wa 0.7.  

Consider first the results displayed in Fig. 7(a). The CMOD
PJ , -values for the pin-loaded specimen are relatively independent 

of strain hardening for the entire range of Wa -ratio, particularly for moderate to low hardening behavior ( n 10).  Such 

response for this range of hardening exponent suggests approximate estimated values of factor CMOD
PJ ,  1.0 for this 

specimen configuration. The variation of CMOD
CJ , -values with Wa -ratio for the clamped specimen shown in Fig. 7(b) 

also displays similar trends in which the  -factors are relatively insensitive to strain hardening in the range of moderate to 

short crack sizes ( Wa 0.3~0.35). For deeper cracks, however, there is a slightly more pronounced effect of strain 
hardening on the  -factors. 

T 
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                                                               (a)                                                                                (b) 
Figure 7: Variation of plastic factor J  with Wa -ratio derived from CMOD  for plane-strain analyses of pin-loaded  and clamped 
SE(T) specimens. 
 

 
                                                               (a)                                                                                (b) 

 

Figure 8: Variation of plastic factor J  with Wa -ratio derived from LLD  for plane-strain analyses of pin-loaded  and clamped 
SE(T) specimens. 

 

 
                                                               (a)                                                                                (b) 

 

Figure 9: Variation of plastic factor   with Wa -ratio derived from CMOD  for plane-strain analyses of pin-loaded  and clamped 
SE(T) specimens. 

 
 

Fig. 8  presents the  -factors using LLD for the pin-loaded and clamped SE(T) specimens with different Wa -ratios. 

Here, the LLD
J -values depend rather strongly on Wa -ratio, particularly in the range Wa 0.4~0.5. Further, factors 
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LLD
J  are relatively insensitive to strain hardening in the range Wa 0.4 for high-to-moderate hardening materials ( n 5, 

10) but display a larger dependence on strain hardening for shallower cracks, particularly for the clamped specimen with 
WH 10. 

Consider now the results shown in Fig. 9 . The behavior displayed by the  -values contrasts rather sharply with the 

previous observed response for factors J . Here, both the CMOD
P,  and CMOD

C, -values depend rather strongly on the 

hardening exponent, n . Such feature can simply be explained in terms of the relationship between J and CTOD given by 
previous Eq. (7) coupled with definition of factor   described by Eq. (10). Because the material's yield stress, which 

enters directly into Eq. (10), is dependent on the adopted strain hardening exponent, the  -values are also sensitive to 
the hardening properties. Further, manipulating expressions (7) and (10) and neglecting the elastic components of J  and 
CTOD, one can easily write mJ   where m  is the dimensionless constant relating J and CTOD which is strongly 
dependent on the material's strain hardening [16,17]. An investigation along this line is progress addressing the 
relationship between J  and CTOD in SE(T) fracture specimens for stationary and growing cracks. 
 
 
PLASTIC J BASED ON LOAD SEPARATION ANALYSIS   
 
Load Separation Behavior for SE(T) Fracture Specimens 

ased on the procedure outlined previously, analysis of the load separation behavior for the plane-strain models of 
pin-load and clamped SE(T) specimens begins by examining the evolution of load with load-line displacement for 
the analyzed crack configuration displayed in Fig. 10. Attention is directed to the moderate hardening material 

with n 10 but the trends are unchanged for other hardening properties. The plots show a rapidly increasing load at low 
deformation levels and then much more slowly as deformation progresses; essentially similar trends are also observed for 
the evolution of load  with crack mouth opening displacement. Using these results, evaluation of the separation parameter 
follows from determining the load ratio, kS , for each specimen geometry based upon the fracture specimen with 

Wa 0.5 adopted as the reference configuration ( 0b 25.4 mm  in the present context). Since the choice of 0b  is rather 

arbitrary [10,11], the separation behavior is essentially similar for other values of 0b  as the reference specimen size. 
 

 
                                                         (a)                                                                                          (b) 
Figure 10: Evolution of load versus load line displacement (LLD) with varying Wa -ratio and n 10 material: a) Pin-loaded 

specimen with WH 6; b) Clamped specimen with WH 10. 
 

Consider now the evolution of LLD
kS with plastic load-line displacement, p , normalized by the crack ligament size, kb , 

for the pin-load and clamped SE(T) specimen displayed in Fig. 11. At very low deformation levels, the elastic component 
of load-line displacement, e , has a magnitude which is comparable with the corresponding magnitude of the plastic 

B 
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component, p , thereby affecting the computed LLD
kS -value for all specimen geometries and loading conditions (pin-

load and clamp); note, however, that since the specimen with Wa 0.5 is taken as the reference configuration, its LLD
kS -

value is unaffected. After this short transient, the load ratio LLD
kS  is essentially constant for deeply cracked specimens 

( Wa 0.4). For the moderate-to-shallow crack configurations ( Wa 0.3), parameter LLD
kS  displays a little sensitivity on 

plastic displacement at early stages of loading but which is nevertheless essentially constant with increased p -values 

 

 
                                                         (a)                                                                                          (b) 
 
Figure 11: Separation parameter, kS , with normalized plastic LLD for the n 10 material and varying Wa -ratio: a) Pin-loaded 

specimen with WH 6; b) Clamped specimen with WH 10. 
 
Plastic -Factors Based on Load Separation Analysis 
Before proceeding with the evaluation of factor   based on load separation analysis, a convenient choice for the function  

 WbG  (and its derivative) is required so that Eq. (13) can be solved. Using the procedure proposed by Sharobeam and 

Landes [11], construction of the function  WbG  follows directly from evaluating  WbS LLDk  for each specimen 

geometry and loading condition so that    WbSWbG LLD
k , where   is a constant. 

Fig. 12 shows the variation of  WbS LLDk  with increased values of Wb -ratio (decreased values of Wa -ratio) for the 
pin-loaded and clamped SE(T) specimens with plastic displacements measured in terms of LLD. To facilitate 
manipulation of the derivative appearing in Eq. (13), it proves convenient to define a functional relationship for 

 WbS LLDk  by an appropriate fitting of the individual computed kS -values. In these plots, the solid symbols are the 

computed kS -values for each Wb -ratio whereas the lines represent the corresponding fitted curves derived from a 

standard least square procedure. Here, three fitting functions are adopted to describe the dependence of kS  on Wb : i) a 

power law model (PLF) defined by   WbSk   in which   and   are constants as proposed by Sharobeam and 
Landes [11];  ii) a 3-rd  order polynomial fitting (3PF); iii) a 5-th  order polynomial fitting (5PF). The trends are clear. The 
polynomial fitting provides good agreement with each computed individual kS -value for all analyzed crack configurations 
and load conditions. In contrast, the power law fitting does not provide a close correspondence with the computed data 
set for the pin-loaded SE(T) specimen. However, the power law fitting curve matches quite well the variation of kS  with  

Wb  for the clamped SE(T) specimens. 

Fig. 13 provides the J -factors derived from LLD for the pin-loaded (denoted as LLD
PJ , ) and clamped SE(T) specimens 

(referred to as LLD
CJ , ) with varying Wa -ratios.  These nondimensional  -values are derived from four different 

procedures as previously described: i) computation of the plastic work defined by the plastic component of the area under 
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the load vs. LLD curve or the load vs. CMOD curve; ii) computation of the load separation parameter, kS , using a power 

law fitting (PLF);  iii) computation of the load separation parameter, kS , using a 3-rd  order polynomial fitting (3PF) and 

iv) computation of the load separation parameter, kS , using a 5-th order polynomial fitting (5PF) . 
 

 
                                                         (a)                                                                                          (b) 
 

Figure 12: Variation of separation parameter, kS , derived from LLD with Wb -ratio for the n 10 material and different fitting 

functions: a) Pin-loaded specimen with WH 6; b) Clamped specimen with WH 10. 
 

 
                                                         (a)                                                                                          (b) 

 

Figure 13: Comparison  of plastic factors J  derived from LLD for pin-loaded  and clamped SE(T) specimens based on different 
estimation procedures. 

 
Considering the results displayed in Fig. 13 based on LLD data, the significant features include: i) a good agreement is 
observed between the  -values derived from the plastic area approach and the load separation procedure using a 
polynomial fitting for the analyses based upon LLD records for the pin-loaded specimens, particularly in the range 
0.2  Wa 0.6; ii) differences in the  -factors derived from the plastic area method and the load separation procedure 
using a polynomial fitting are slightly larger for the clamped specimens; iii) the  -factors derived from the load separation 
analysis using a power law fit is independent of crack size. 

One salient feature of the previous results is the independence of factor LLD
J on crack size for any condition analyzed. As 

already hinted before, this is not unexpected and can be easily understood by the following argument. A simples 
inspection of previous Eq. (13) reveals that function  WbG  (which is proportional to  WbSk ) cancels when a power 

law type model is employed. Consequently, the assumption of a power law in the form   WbSk   adopted by 
Sharobeam and Landes [11] with parameters   and   translates directly into a constant  -factor which is equal to the 
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power law coefficient,  .  Such conclusion is in stark contrast with previous work conducted by other researchers ( see, 
e.g., [24] and references therein) and the results presented here which reveal a rather strong dependence of factor   on 

crack size, particularly for moderate-to-shallow cracks ( Wa 0.3). 
 
 

CONCLUSIONS 
 

he extensive numerical analyses conducted for pin-loaded and clamped SE(T) fracture specimens provide a large 
set of plastic  -factors applicable to evaluate J  and CTOD with varying Wa -ratios and hardening properties 
characteristic of structural, pressure vessel and pipeline steels. These dimensionless  -values enter directly into 

estimation procedures for fracture toughness based on experimentally measured plastic work as represented by the plastic 
area under the load-displacement curve derived from current testing protocols. The analyses also considered alternative 
approaches to evaluate the plastic component of the J -integral from laboratory testing of conventional fracture 
specimens using the load separation methodology and the multispecimen procedure. 
The present analyses also demonstrate good agreement between the J -integral determined from plastic work and its 
domain integral definition for shallow to deep crack SE(T) specimens ( Wa 0.2). While the studies conducted here do 

not recommend testing very shallow cracked tensile specimens ( Wa 0.2) due to additional complexities and low 
accuracy in J  measurements, the plane-strain results reported in this work clearly lend strong support for estimation 
procedures of J  and CTOD toughness parameters based on plastic work and the associated  -factor. Overall, the 
present investigation, when taken together with previous studies, provide a fairly extensive body of results which serve to 
determine parameters J  and CTOD for different materials using tensile SE(T) specimens with varying geometries and 
loading conditions. On-going work on other related fronts is in progress which includes the assessment of weld strength 
mismatch effects on J -based procedures for J  and CTOD evaluation, and development of robust relationships between 
J  and CTOD in SE(T) fracture specimens for stationary and growing cracks. 
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