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ABSTRACT. The scope of the present work is to point out a consistent simulation procedure for the quasi-static 
fracture processes, starting from the micro-structural characteristics of the material. To this aim, a nine-
parameters Gurson-Tvergaard damage law has been used. The damage parameters depend on the micro-
structural characteristics and have to be calculated, measured or opportunely tuned. This can be done, as 
proposed by the author, by using an opportunely tuned GT model for the representative volume element 
simulations, in order to enrich the original damage model by considering also the defect size distribution. Once 
determined all the material parameters, an MT fracture test has been simulated by a FEM code, to calculate the 
R-curve in an aeronautical Al-based alloy. The simulation procedure produced results in a very good agreement 
with the experimental data. 
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INTRODUCTION 
 

n aircraft structures the damage tolerance design concept is widely used, that tolerates the presence of macroscopic 
cracks during the ordinary service life, prescribing to take they under control. The fuselage skin, which thickness 
ranges from 1 to 3 mm, is often made of aeronautical aluminium alloys capable of fully ductile behaviour. For this 

reason, a great importance assumes in this field the study of both the static and the dynamic response of cracked panels in 
ductile regime, in terms of residual strength. The so-called R-curve, that gives the critical stress intensity factor versus the 
crack length for a given panel, is a widely used tool to design following the above criteria; unfortunately it depends both 
from material and geometrical properties and then changes as the test configuration changes. A reliable calculation model 
of the R-curve is, for this reasons, very important for the design purposes, in order to drastically decrease the amount of 
physical tests.  
Many models for ductile fracture growth have been proposed in the past [1-7] and, for their relative simplicity and 
efficiency the Gurson-Tvergaard model and many its variants are proposed by several authors and also included in some 
public FEM codes. They typically present many free parameters that should be calibrated [8-10] and fixed in a consistent 
way in order to make the calculation procedure effective. In the present work, a complete procedure to calculate the R-
curve is presented and an application on a widely used aeronautical alloy is reported, using some material and test data 
provided by industrial research offices. 
 
 
THE GURSON MODEL FOR DUCTILE FRACTURE 
 

n an homogeneous metal model, the total deformation usually doesn’t affect the volume change, because the plastic 
part of the deformation is dominant with respect to the elastic one. Otherwise, in a microstructure model containing 
voids, volume can globally change, due to the local plastic flow arising around the voids boundary. Consequently, the 
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microstructure response to an imposed global strain will be a stress curve with a softening, nevertheless the material 
matrix be constituted by a metal with an hardening behaviour. Contemporarily, the voids grow until the global load carry 
capability becomes negligible. 
This model is able to explain the local strength decrease during the fracture process of ductile metals in the intermediate 
phase between the nucleation and the coalescence of voids. In other words, in the void growth model the number of voids is 
kept constant. Nucleation and coalescence are taken into account before the homogenization, applying some opportune 
corrections directly to the stress-strain cell response. 
 
Gurson-Tvergaard model 
The homogenization technique is based on the stress-strain characterization of a Representative Volume Element (RVE), 
that is the minimum material volume containing all the micro-structural information of an heterogeneous material, related 
to the specific problem under investigation (see, e.g., [11, 12]). In the Gurson-Tvergaard void growth model, the RVE of 
the material is considered as a cubic volume with a single void, existing before the material is stressed. The initial void 
volume fraction f0 should be chosen as the ‘equivalent’ volume fraction corresponding to the physical distribution of 
voids or defects inside the RVE (Fig.1). 
 

       
 

Figure 1: Physical vs. equivalent voids distribution 
 

The resulting homogenized material model was defined by modifying the analytical solution of the second cell in fig. 1, 
performed by Gurson and limited to a rigid-plastic material model of the matrix. The corrections take into account for the 
hardening of the matrix material and for the presence of void cell array instead of a single void cell. They are represented 
by the coefficients q1, q2, q3 in the critical surface definition, introduced by Tvergaard. 
The homogenized constitutive law is defined by (tensor are indicated with bold characters): 
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Where: 
 
 (11) defines the critical surface; 
 (12) is the plastic flow rule; 
 (13) is the void growth rate definition; 
 (14) imposes the equivalence between micro and macro-mechanical plastic work; 
 (15) is the global stress-strain relationship; 
 (16) is the plastic hardening power law for the matrix material. 
 
Further: 
 

   : stress tensor; 

, p    : total and plastic strain tensors; 

eq   : Von Mises equivalent global stress; 

 m    : global mean stress; 

      : current matrix flow stress (internal variable); 
      : current matrix equivalent strain (internal variable); 
f      : voids volume fraction (internal variable); 

 N      : hardening coefficient; 

0 0,    : yield equivalent stress and strain; 
q1, q2, q3  : Tvergaard correction coefficients. 

 
Nucleation model 
The nucleation of the first void in an array of cells is implicit in the above model. With the increasing load, other voids can 
nucleate in the RVE, and this fact is taken into account in the homogenized material law by increasing the void growth 
rate defined in (13).  
In the present study the following relation is used: 
 

 nucdf A d            (21) 
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The corrected void growth rate becomes: 
 

   1 :pdf f d A d             (1’3) 
 

The expressions (2) relate the voids growth rate due to the nucleation process to the internal equivalent strain rate d . 
This acceleration is driven by the parameter A and it is limited to an internal  strain condition in which   is quite close to 
a certain value N, representing the matrix strain value in which the nucleation takes place. 
Three new parameter are so introduced in the constitutive law (1): 
 

fN : magnitude of the volume fraction rate increasing; 

N : main value in which the nucleation takes place 
SN : standard deviation. 
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Cell dimension 
It is well known that the undefined equilibrium problem in a material domain which constitutive law has softening 
branches loses ellipticity near the critical point, so it is hill-posed.  
If the finite element method is used to search a solution, disregarding the above problem, the resulting discrete equation 
can be solved, but the solution is chronically mesh dependent and the convergence can’t be reached. This occurs because 
near the softening condition the strain field becomes discontinuous and, correspondently, in the discretized problem the 
strain tends to concentrate in a small zone, which size depends on the elements size. Smaller the element size, smaller the 
zone affected by the strain concentration. This behaviour is commonly named localization.  
If the softening law derives from a physical model of the material, the incongruence can be explained noting that, at the 
micro-structural scale, the material domain can’t be longer be considered homogeneous, so the softening at the large scale 
material law can be attributed to the micro-structural geometric changes.  
Apparently, the consequence of this fact is that we can’t use homogenization techniques if the global material law presents 
a softening behaviour. In practice, using a FEM model, we can avoid the mesh dependence by keeping fix the element 
dimensions in the fracture zone, regardless with the macroscopic geometry of the domain. The correct element dimension 
depends on the scale of the local fracture process related to the particular material under consideration. In this way, the 
element dimension becomes a further parameter of the material constitutive law. 
In other words, we couldn’t use an homogenized law because the analytical equilibrium problem is hill-posed, but the 
error that can’t be eliminated in the FEM solution of this problem can be driven in order to reach an allowable numerical 
result. 
 
Voids coalescence 
In the constitutive law (1) the internal strain state is represented by an unique variable  . This simplification can be 
accepted in the early phases of the void growth, in which the internal strain (and stress) distribution doesn’t vary too 
much. In the following load phase the material model becomes unrealistic. This is the phase in which the fracture 
advances between two consecutive voids (coalescence) an even the RVE model with the single equivalent void becomes 
unrealistic. 
The coalescence, and the consequent crack advancing, is modelled in the FEM code by the elimination of the 
corresponding element (killed element) when a critical volume fraction value fc is reached. Many studies have demonstrate 
that the critical value should be much less then 1, that is the value provided by the theory. For many material the critical 
volume fraction can be set-up between 0.15  0.25, and a phenomenological correlation furnish the following empirical 
law: 
 

00.15 2cf f            (3) 
 

Along the crack plane, the element traction forces are still present in this condition (f = fc) and they are gradually decreased 

until zero is reached, using a multiplicative coefficient , related to the cell dimension D and depending from a further 
parameter , to be set. 
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CELL CALIBRATION 
 

he material model descript above needs the calculation, the measurement or the phenomenological tuning of (at 
least) 13 parameters: 
 
The internal plastic-hardening parameters N, 0 0,   . 

The Tvergaard correction coefficients q1, q2, q3 . 

The nucleation parameters fN , N , SN . 
The cell height D. 
The initial and critical void volume fraction  f0 , fc . 

T 
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 The force release parameter . 
 
Critical void volume fraction and force release parameter 
These parameters are related to the coalescence phase. For the present calibration they have been chosen as mean values 
from the ones present in literature. 
 

fc  = 0.2;    = 0.1. 
 

The release forces parameter contributes to form the energy released in the element extinction process, so it can’t be 
considered a merely calculation parameter. The  coefficient (4) depends on the orthogonal to the crack plane 
component of the strain. In fact, we can write: 
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So, the energy W released in the force release process (coalescence) can be evaluated: 
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where: 
 

c   is the stress corresponding to the critical strain c (reached when  f = fc); 
D, A are the cell height and the cell area parallel to the crack plane; 
V is the cell volume. 

 
Cell height and initial void volume fraction 
Both the cell height and the initial void volume fraction can be estimated considering as a starting point the defect size 
distribution. 
 

2024A-T351 All Three Directions
Equivalent 
Diameter 

(m) 

Volume 
Fraction (%)

Standard 
Deviation 

Nearest 
Neighbour 

(m) 

Nearest 
Neighbour 
Standard 

Deviation(
m) 

Minimum 
Separation 
Distance 

(m) 

Minimum 
Separation 
Distance 
Standard 
Deviation 

(m) 

Average 
Diam of 

particles in 
size category 

(m) 

All Sizes 0,76 0,33 10,61 8,01 8,55 8,09 1,75
1:2 0,13 0,06 16,14 12,11 14,65 12,39 1,41 
2:3 0,10 0,05 35,18 26,48 32,82 27,30 2,41 
3:4 0,07 0,04 62,38 46,78 59,61 48,71 3,41 
4:6 0,12 0,07 58,90 40,68 53,76 42,22 4,87 
6:8 0,11 0,08 93,54 64,45 86,12 66,44 6,88
8:10 0,09 0,09 130,27 96,68 122,14 101,91 8,86 
10+ 0,14 0,21 126,95 97,90 111,94 99,72 13,23 

 

Table 1: Defects size (industrial data) 
 
The cell dimension, and in particular the cell height, is a fundamental parameter because, when the strain localization 
occurs, the cell height coincides with the localized strip of material. So, from this point, the most of the energy released is 
proportional to the this parameter. On the other side, in the present model the energy released is also influenced by the 
coalescence parameters and by the shape of the stress-strain curve (that depends on the nucleation and Tvergaard 
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parameters). Then, the correct cell height should be chosen taking into account the influence of the above parameters in 
the fracture process. 
If we consider the cell as a representative volume element (as it should be) it should contain a sufficiently representative 
defect (considered as voids) distribution.  
Of course, a greater RVE contains more micro-structural information, but is less useful in the present model because the 
strain would localize in a strip with fixed height. In conclusion, the cell height can’t be precisely defined without a critical 
consideration of all the constitutive law parameters influence.  
As an approximate evaluation, we can consider the bigger defects above the last 20% of the total volume fraction the 
driving defects of the localization process. In this way, with reference to the Tab.1, an RVE, which dimension is 
coincident with the cell height, will contain one defect with 10+ m diameter and the appropriate number of minor 
defects as deduced from the size distribution (Tab. 2). 
 

Category 
 
 
 

Volume 
fraction 

 
 

Average 
diameter 

(m) 
 

Spherical 
average 
diameter 

(m) 

Volume 
(m3) 

Density 
(defects/ 

mm3) 

Defects in 
the RVE 

1:2 0,0013 1,41 1,79 3,00 433000 904 

2:3 0,0010 2,41 3,07 15,1 66200 138 

3:4 0,0007 3,41 4,34 42,8 16300 34 

4:6 0,0012 4,87 6,20 125 8810 18 

6:8 0,0011 6,88 8,50 322 3410 7 

8:10 0,0009 8,86 11,3 752 1200 2 

10+ 0,0014 13,23 17,7 2920 479 1 
 

Table 2: Defects distribution in the RVE (from Tab. 1 data rearranging). 
 
The cell height and the initial void volume fraction can be finally estimated: 
 

D = (10+ category density) – 1/3 ≈ 130 m;    f0 = 0.0014 
 

The D value is in good agreement with the literature values that varies between 80÷200 m. 
This procedure can appear arbitrary. In fact, if the categories was chosen in a different way (for instance the last category 
could be 8+ or 12+), the resulting D and f0 parameters were different. On the other side, this can be avoided if we 
consider for all the distribution, as stated above, the bigger defects above the last 20% of the total volume fraction; in 
this case, is arbitrary the 20% value. 
As discussed above, a certain arbitrariness is un-eliminable because the cell height (and consequently the initial volume 
fraction) has the double role of dimension of the RVE and dimension of the strain localization zone. Then, once 
established the cell height on the basis of a reasonable RVE choice, the effect of the strain localization should be taken 
into account by tuning both the nucleation parameters (that can be considered responsible for the minor defects growth) 
and the coalescence parameters fc , . 
As an example, in the pictures below (Fig. 2) is reported the equivalent strain distribution inside two different 
bidimensional RVE with the same initial volume fraction (see Fig.1 for the undeformed configuration). The first, is the 
simplified Gurson RVE with a single void; the second, has a void distribution compatible with the Tab. 2 distribution. 
It can be deduced that the localization zone dimension is larger in the first that in the second RVE. This fact influences 
the global cell response (Fig. 3). Supposing that the second RVE represents a sufficiently accurate evaluation of the 
material behaviour, the cell height is too large in relation to the ‘true’ localization zone, as it results comparing the 
different entity of energy involved in the load process. Once established a compromise value D = 100 m < 130 m, the 
difference should be taken into account by tuning, as written above, the nucleation and the coalescence parameters. 
 
Tvergaard correction coefficients 
The correction coefficients q1, q2, q3 can be calculated from a single void RVE model. 
The global cell behaviour has been calculated for two different load conditions:  
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1) Imposed global strain x > 0 and free surface condition for y and z direction. 

2) Imposed global strain x > 0 and y = z = -0.2x. 
 

Figure 2: Equivalent strain distribution inside two RVE 
 

Figure 3: Global cell response. 
 
In the following pictures 4-5 are presented the cell mesh and the resulting strain distribution in the x direction for the 
two considered load cases.  
 

 
 

Figure 4: FEM model of the single void cell 
 

 
 

Figure 5: Strain (x) distribution for the two load cases 

 
It can be noted that in the first case the x-direction strain is about uniform, but in the second there is a consistent strain 
concentration on the void boundary. This agrees with the constitutive law (1), that attributes the void volume fraction 
growth to the mean stress (eq. 13) that in the first case is much lower than in the second one. 
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The global RVE responses have to be compared with the Eq. (1) stress-strain curves resulting from an equivalent load 
process. This comparison allows to determine the Tvergaard correction coefficients.  In the present work, the analytically 
derived  relation is adopted, that: 
 

2
3 1q q  

 

In the subsequent refinement of the model calibration the parameter q3 could be live free.  
The two remaining free parameters q1, q2 are determined by imposing on the homogenized law the condition that the 
characteristic values: 
 

max ;    
0

c

d

   

 

are equal to that resulting from the FEM calculation. 
The first load case (uniaxial strain) is quite insensitive to the parameter variation, due to the very slow void growth rate 
present in this condition, so the calibration has been done with reference to the second load case. Finally, the resulting 
values are: 
 

q1 = 1.25;  q2  = 0.98. 
 

In Fig. 6, the comparison between the FEM model cell and the homogenized law (1) stress-strain curve is reported for 
the two load cases. 
 

 
 

Figure 6: Global cell response compared with Eq. (1) for the two load cases. 
 
In the following Fig. 7 the coalescence law (4) has been included into the constitutive law, with the imposed values fc  = 

0.2 for the starting point, and  = 0.1 for the curve slope, as established before. It is shown that the energy related to the 
coalescence process is a non negligible part of the total cell energy. 
 
Nucleation parameters 
In the present work, the nucleation parameters have been considered as correction parameters, not directly related to the 
microstructure. Then, the parameters fN, N , SN  have been used to fit the experimental-numerical results in the 
residual strength curve, and their values are reported in the following section. 

 
 

R-CURVE DETERMINATION 
 
The R-curve calculation procedure has been tested on an M(T) specimen model, which experimental results have been 
published in [13]. 
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The M(T) specimen used for the residual strength results is made by a 1.28 mm thick 2024 sheet material. The panel 
width is W = 500 mm and the initial half crack length is a0 = 49.78 mm. Testing and data evaluation were done 
according to ASTM specification E561-86 for R-curve determination. The residual strength tests were done under 
displacement control. 
 

 
 

Figure 7: Global cell response compared with eq. (1) and the coalescence law. 
 
Mesh generation 
The FEM mesh has been generated within the ANSYS code pre-processor module. All the elements are eight nodes 
brick, in order to be allowable for the subsequent calculations with the WARP3D [14] solver. The specimen has been 
modelled taking into account the three symmetry conditions. Along the crack plane, all the elements are cubic with 
length D = 106.667 m (see the calibration section). Along the thickness t, six elements have been generated, so that t/2 
= 0.64 mm = 6D. In Fig. 8 some particulars of the mesh generation are reported. 

 

 
 

Figure 8: Mesh generation. 
 

It should be noted that, as shown in the last picture, there isn’t the row of elements before the initial crack front. Further, 
the elements that will be killed during the crack advance simulation are indicated with a different colour, that indicates 
two different materials. In fact, for computational reasons, the killable elements have to be separated from the non-
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killable ones; otherwise, the solver can try to kill the above elements in contrast with the crack plane definition. This 
contrast will produce a fatal error (the limitation is related only to the force-release kill procedure). The elements 
immediately before the initial crack front have been deleted in order to avoid an undesired ‘collaboration’ to the initial 
crack strength. 
The as generated mesh, and the boundary conditions can be ‘translated’ into the corresponding WARP3D commands by 
using a Fortran routine. 
 
Results: Load vs. crack length curve 
From the experimental test data, the following material parameters have been chosen for the numerical analysis: 
 

 E = 71100 MPa 
 y = 366 MPa 

u = 482 MPa 

 f = 0.173 
 

So, the internal stress parameters are (see the calibration chapter): 
 

0 = y = 366 MPa 

0 = y / E = 0.00515 

f,log = log(1 +f ) = 0.1596 

u,true = u(1+f ) = 565 MPa 

N = log(f,log /0) / log(u,true /0) = 8.0 
 

The other constitutive law parameters value, calculated in the above chapter, are: 
 

q1 = 1.25 
q2 = 0.98 

2
3 1q q = 1.56 

f0 = 0.0014 
D = 0.10667 mm 
fc = 0.2 

 = 0.1 
  

After the solution has been calculated, by using a Fortran routine, the WARP3D output file can be read and interpreted. 
For every step, the total reaction value Ry in the traction direction and the total number of killed elements Nk are stored. 
Then, with simple transformations, the gross stress S and the half crack length a are pointed out: 
 

S = Ry / (t·W/4) 

a = Nk / (t/2)·D2 
 

The resulting curve S(a) has to be compared with the experimental curve in order to perform the tuning of the 
nucleation parameters. 
 
Nucleation parameters tuning 
From the afore cited experimental test data, the following experimental stress vs. crack length curve results (Fig. 9). 
By varying the nucleation parameters N , SN, fN , different curves have been calculated . The parameter fN  gets down 
the curve when it is increased; SN has the opposite effect, with a little influence on the shape of the curve; the increasing 

of N can slightly move the curve maximum value versus the increasing a. The best nucleation parameters are: 
 

N  = 0.09 
SN = 0.09 
fN = 0.2 
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Figure 9: Experimental stress vs. crack length curve. 
 

Final results and R-curve 
The ASTM specification E561-86 for R-curve determination imposes that the curves have to be expressed in terms of 
equivalent stress intensity factor and equivalent crack length, in order to take into account for the plastic deformation 
around the crack tip. 
For the M(T) central crack specimen, the equivalent SIF is: 
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The equivalent crack length has two alternative definition: the one, based on the Crack Opening Displacement in the 
traction direction of the centre of the crack; the other, that has been adopted in the present work, based on the plastic 
radius evaluation. 
The plasticity contribution to the crack length is done by: 
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The equivalent crack length is defined by: 
 

0; aaaraa eqeqpeq          (62) 
 

The plastic radius definition (6) contains the equivalent SIF and, vice-versa, the expression (5) contains the equivalent 
crack length. It is then necessary to calculate iteratively the two expressions (5), (6) up to the convergence is reached. 
The current plastic radius value is done by: 
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The convergence is reached when the (i+1)-th value of the plastic radius differs from the i-th value for a ‘small’ quantity. 
By using the S(a) values calculated before, and after the above descript transformation (S, a)  (Keq, aeq), we can 
compare the calculated and experimental R-curves, as reported in Fig. 10. 
As a result, the calculated R-curve is in very good agreement with the experimental test. 
In the following pictures, some results from the FEM solution are reported. The WARP3D solution data stored during 
the calculation has been ‘translated’ in ANSYS commands with a Fortran routine, in order to use its postprocessor 
module. 
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In Fig. 11 the calculated stress distribution in the traction direction (y) for the half-crack length increasing a = 25 mm is 
reported for the whole model and near the crack front. It is possible to appreciate the thorough-the-thickness 
distribution (remember that symmetry conditions have been imposed). 
In the following Fig. 12, the crack front shape is pointed out. It results from the elements extinction procedure above 
descript. 

 

 
 

Figure 10: Comparison between calculated and experimental R-curve. 
 

 
 

Figure 11: Calculated stress distribution in the traction direction (y) for a = 25 mm. 
 

 
 

Figure 12: Crack front shape resulting from elements extinction. 
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In Fig. 13, the enhanced deformed configuration is reported, for a = 25 mm. In the first picture, the deformation 
around the crack tip is pointed out ant it is possible to  appreciate the strain localization effect. In the last picture, the 
residual strain near the initial crack length is shown. Considering that the crack surface is stress free, the deformation is 
totally plastic. Further, the difference between the residual strain on the symmetry surface (the visible surface) and the 
external one is shown, were for the external surface (near the plane stress condition) the plastic strain is much higher. 
 

 
 

Figure 13: Deformed configuration near the crack tip and the initial crack length. 
 
 
CONCLUSIONS 
 

 complete procedure for the R-curve calculation has been presented, that gives results in a very good agreement 
with the experimental tests. The algorithm, based on the Gurson – Tvergaard damage model, uses a preliminary 
RVE definition, partially based on microstructural information on the material, to determine most of the 

continuum-scaled model. Only few parameters are tuned on the basis of an experimental test, that are the nucleation 
parameters fN, N, SN. They are related to the material behaviour, nor to the geometry of the test specimen. For this 
reason, they can reasonably determined with a single test result, as is done in the present work, and the same values can be 
used for different geometries, as the design process requires. 
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