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ABSTRACT. In the present paper, the TFA homogenization procedure is extended to the case of nonuniform 
eigenstrain in the inclusions, in order to deduce the overall response of regular masonry arrangements to be 
used for the multiscale analysis of masonry walls. Special constitutive laws, based on damage and plasticity 
models, are adopted for the mortar. Nonlinear behavior is considered even for some subsets of the blocks; in 
fact, nonlinear damage and plasticity effects are introduced in the subsets of the block aligned with the head 
mortar joints. Numerical examples of homogenization are carried out, comparing the nonlinear mechanical 
response of the masonry obtained performing the proposed homogenization technique with the results 
recovered by evolutive nonlinear finite element analyses. 
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INTRODUCTION 
 

he masonry is a composite material obtained assembling blocks of different nature and shape connected by mortar 
beds. The global mechanical response of the composite material can be obtained adopting homogenization 
procedures, that study a representative volume element (RVE) determining the behavior of the homogenized 

equivalent material. In order to develop a structural study, in which the nonlinear response of the masonry material is 
derived from a micromechanical analysis, a micro-macro approach, in other words a multiscale approach, has to be 
performed. The multiscale technique consists in the structural modeling through two different scales: one scale at the 
continuum mechanics structural level, macro-scale, and one scale at the material level, micro-scale, able to distinguish the 
single heterogeneities that are present in the masonry material. The development and the use of multiscale procedures is a 
complex task as it is necessary to solve the micromechanical problem and to adopt the obtained results in order to 
perform the structural analysis. 
It can be remarked that the masonry can be characterized by different arrangements of the blocks that can be positioned 
in regular or irregular arrays. In the case of composite material with periodic microstructure, it is possible to consider a 
unit repetitive cell (UC) in order to study the constitutive behavior of the composite [1, 2].  
Simplified micromechanical approaches, derived for the particular microstructural geometry of masonry material, have 
been developed, among the others, in References [3-6]. 
A multiscale procedure was presented by Luciano and Sacco [7], assuming that fractures can develop only in the mortar 
material. For the periodic unit cell, all the possible states, characterized by different arrangements of cracks in mortar, are 
identified. Then, crack growth and evolutive relations are provided. 
Indeed, a major problem in the multiscale analysis is the development of an effective, i.e. simple and accurate, 
homogenization procedure. It could be emphasized that, for the masonry material, the homogenization is not a simple 
task as, even if regular periodic masonry is considered, the geometry of the UC is still complex.  
The Transformation Field Analysis (TFA) is an interesting approach for solving the nonlinear micro-mechanical 
homogenization problem. It was initially proposed by Dvorak [8] and, then, applied to plasticity and visco-plasticity 
problems by Fish and Shek [9]. According to TFA approach, the inelastic strain, is assumed to be uniform in each 
individual phase of the composite. Chaboche et al. [10] improved the TFA for deriving the nonlinear behavior of 
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damaging composites, subdividing each phase into sub-domains, at the expense of increasing the complexity of the model. 
Michel and Suquet [11] presented a nonuniform TFA procedure for determining the overall behavior of nonlinear 
composite materials. The use of the TFA requires the computation of localization and transformation tensors. When the 
geometry of the microstructure is complex, as in the case of masonry material, numerical techniques can be adopted. In 
fact, the finite element method or the fast Fourier transform technique are able to accurately evaluate local stress and 
strain fields, so that the correct nonlinear behavior of the phases can be described. 
Recently, Sacco [12] and Addessi et al. [13] presented a nonlinear homogenization procedure for the Cauchy and Cosserat 
masonry models based on TFA, making use of the superposition of the effects and of the finite element method. 
In the present paper, the TFA homogenization procedure is extended to the case of nonuniform eigenstrain in the 
inclusions, in order to deduce the overall response of regular masonry arrangements to be used for the multiscale analysis 
of masonry walls. 
Each phase of the unit cell, i.e. mortar and bricks, is decomposed in subsets. Special constitutive laws, based on damage 
and plasticity models, are adopted for the mortar. Nonlinear behavior is considered even for some subsets of the blocks; 
in fact, nonlinear damage and plasticity effects are introduced in the subsets of the block aligned with the head mortar 
joints. 
The TFA is extended to the nontrivial case of bilinear distribution of the eigenstrain in the subsets. The nonlinear 
governing equations are deduced and a numerical procedure is proposed. Numerical examples of homogenization are 
carried out, comparing the nonlinear mechanical response of the masonry obtained performing the proposed 
homogenization technique with the results recovered by evolutive nonlinear finite element analyses. The numerical results 
demonstrate that the proposed enhancement of the classical TFA leads to very satisfactory results. 
 
 
NONLINEAR HOMOGENIZATION FOR PERIODIC MASONRY 
 

he masonry is considered as a composite, i.e. heterogeneous, material composed by bricks and mortar organized in 
a very regular geometry at the microscale level. In fact, the bricks are connected by horizontal and vertical joints of 
mortar, generating a periodic microstructure. Hence, the regular masonry material is a periodic composite material. 

A special, but very common, masonry texture is studied in the following. The considered Unit Cell (UC) completely 
defining the masonry material arrangement is illustrated in Fig. 1. The chosen UC is characterized by a rectangular shape 
with dimensions 2a1 and 2a2, parallel to the coordinate axes x1 and x2, as shown in Fig. 1. It accounts for all the geometric 
and constitutive information of the masonry components; the mortar thickness is denoted by s and the brick sizes by b 
and h. 

 
Figure 1: Unit cell for repetitive masonry. 
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It can be remarked that the whole UC is divided in subsets, some of which are indicated by a number form 1 to 5. In 
particular, subset 1 indicates the mortar head joints, subset 2 and 3 the bed joints, 4 the head-bed mortar intersection and 
5 is the vertical part of the bricks aligned with the mortar head joints. Indeed, it is assumed that the numbered subsets are 
responsible for the nonlinear behavior of the masonry. 
 
Mortar 
A very special constitutive law, based on the mechanical model proposed by Sacco [12], is considered for the mortar. The 
constitutive law accounts for the coupling of the damage and friction phenomena occurring in the mortar joints during 
the strain history [6]. 
A local coordinate system is introduced: H denotes the horizontal axis and V is the vertical direction, as reported in Fig. 2.  

 
 

Figure 2: Coordinate system for (a) bed and (b) head joints. 
 
The Representative Mortar Element RME, defining the constitutive behavior at a typical point of the mortar, is 
introduced. A micromechanical analysis of the RME allows to define the damage variable D  as the ratio between the 
damaged and the total representative area. 
Denoting with the superscripts u and d the quantities referred to the undamaged and damaged part of the RME, 

respectively, and adopting the Voigt notation, the stress vector  TM M M M
H V  σ  is obtained by the relationship: 

  1M u dD D  σ σ σ          (1) 
where: 

  
0

with 0

0 0

M M
HH HV

u M M d M M p M M M
VH VV

M

C C

C C

G

 
       
  

σ C ε σ C ε c ε C    (2) 

being  TM M M M
H V  ε the strain vector and MC  the elasticity matrix of the mortar. The inelastic strain vectors 

c  and pε  are defined in the damaged part of the RME and account for the unilateral effect and the possible friction 
sliding, respectively. In particular, it is assumed: 

  T

H Vh h h  c   
         (3) 

 

Where                                             ;             is the Heaviside function, which assumes the following values:                     if   

             and                  if             , where   stands for H  or V . In such a way, setting             , the following cases can 
occur: 
 

    max , H Vh h h   h    0 h 
0    1 h  0  pε 0
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  (4) 

The inelastic strain pε  is characterized by the first two components equal to zero, and by the third component accounting 

for the sliding:  0 0p pε . The evolution of the inelastic slip strain component p  is governed by the classical 

Coulomb yield functions: 

 

d d d
H H

d d d
V V

  

  

 
 
 

 
 
 

 

 

σ

σ
          (5) 

where   is the friction parameter. The non-associated flow rule is considered: 

  
d

p

d

 
   with 

 
 

0 φ 0

φ 0

 







d

d





σ

σ
     (6) 

About the evolution of the damage parameter D, a model which accounts for the coupling of mode I and mode II of 
fracture is considered. The three quantities H , V  and  , which depend on first cracking strains ,H o , ,V o  and o , 

on the peak value of the stresses ,H o , ,V o  and o  and on the fracture energies HcIG , VcIG  and cIIG , respectively, are 

introduced: 

 
, , , ,

2 2 2
H o H o V o V o o o

H V
HcI VcI cIIG G G

               (7) 

 

Then, the strain ratios are determined as: 

  22 2

2

1
1 M M M

H H V V       


              (8) 

 
222 1VH YYY               (9) 

with  

  22 2

, ,

M M M
H VM M M

H V H V
H o V o o

Y Y Y

     
  

          (10) 

where the bracket operator   gives the positive part of the number  . Finally, the damage is evaluated according to the 

formula: 

 
1

max min 1
1history

D


 
            

        (11) 

In Fig. 3, the normal and shear stress-strain relationships are plotted; of course, other damage evolution laws can be used 
in the formulation. 
Taking into account the constitutive Eqs. (2), formula (1) becomes: 

  M M D σ C ε π           (12) 

where the total inelastic strain p π c ε  is introduced. 
It can be remarked that the proposed mortar constitutive equations can be simplified for the bed and head joint, as 
schematically reported in Tab. 1. 
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                                                (a)                                                                       (b) 

Figure 3: Stress-strain curves due to damage, (a) Mode I and (b) Mode II. 
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Table 1: Equations governing the behavior of bed and head joints. 
 
Brick 
The linear elastic constitutive law is considered for the brick. In fact, denoting by BC  the elastic matrix of the masonry 
brick, the stress-strain relationship is written in the form: 

 
B B Bσ C ε            (13) 

where  1 2 12

TB B B B  σ  and  1 2 12

TB B B B  ε  are the stress and the total strain vectors in the brick, 

respectively. 
It is assumed that the subset 5 of the brick, reported in Fig. 1, presents a nonlinear behavior; in particular, the same 
constitutive relationship proposed for the mortar joint is considered, assuming, of course, different values for the material 
parameters. 
 

 
NONLINEAR HOMOGENIZATION TECHNIQUE 
 

n the heterogeneous masonry unit cell, a set of n  sub-domains i , where inelastic effects occurs, is identified. In 

particular, the sub-domains are introduced in the mortar joints and in a part of the brick. Denoting by 
1

n
i

i

     

and by   the whole UC, the elastic part of the UC is denoted as e , such that e   . The UC is subjected to: 

I 
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- the average strain e  on the whole masonry unit cell, 

- the inelastic strain iπ  in each sub-domain i  ( 1,..,i n ). 

The displacement field  1 2,
T

u uu  for periodic media is expressed by the following representation form:  
  

1 1 2 1 1 12 2 1 1 2

2 1 2 12 1 2 2 2 1 2

( , ) ( , )

( , ) ( , )

u x x x x u x x

u x x x x u x x

 
 

  
  


         (14) 

 

where 1 2( , )x xx  is the position vector of the typical point of  , ε  is the average strain of the cell and 1 2( , )x xu  is 
the periodic part of the displacement [1, 2]. From formula (14), the strain vector is given by: 

 1 2 1 2( , ) ( , )x x x x ε ε ε          (15) 
where 1 2( , )x xε  is the periodic part of the strain, with null average in  , associated to the displacement u . 

The in-plane periodicity and continuity conditions lead to the following boundary conditions: 
 

 
 
 

1 2 1 2 2 2 2

1 2 1 2 1 1 1

( , ) ( , ) ,

( , ) ( , ) ,

a x a x x a a

x a x a x a a

    

    

u u

u u

 

          (16) 

 

Because of the periodicity of the solution of the micromechanical problem, it can be deduced that the parts of the unit cell 
denoted with the same label in Fig. 1 are characterized by the same strain and stress fields. 
 
Average strain e  
Let the solution of the micromechanical problem, corresponding to the prescribed value of the overall strain e , be 
determined. The strain field can be written in the following representation form:  
 

    1 2 1 2, ,x x x xe R e          (17) 
 

Where                  is the localization matrix, able to recover the local strain at any point of the composite when the average 
strain      is prescribed.  
The average stress in the whole unit cell   is obtained as: 
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  
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 eσ C e C e

C R C R e Ce

        (18) 

 

where V   is the total volume of the UC, 
iR  and 

eR are defined as: 
  

   1 2 1 2

1 1
, ,

j e

j e

i e

x x dV x x dV
V V

 

 
 

  R R R R       (19) 

C  represents the overall elastic constitutive matrix, 
i M C C  or 

i B C C  when i  is a sub-domain of the mortar or 

of the brick, respectively, and 
j

V   and 
e

V   are the volumes of j  and e . 
 

Inelastic strain iπ  
The inelastic strain in the typical sub-domain i  is represented in the form: 
 
 

 
0 1 1 2 2 1 2 3

0 1 2 3ˆ ˆ ˆ ˆ

i i i i i

i i i i

x x x x   

   

π π π π π

π π π π
         (20) 

 

 1 2,x xR
e

http://www.gruppofrattura.it/


 

                                                        S. Marfia et alii, Convegno Nazionale IGF XX, Torino 24-26 giugno 2009; ISBN 978-88-95940-25-0 
 

59 
 

When an inelastic strain contribution ˆ i
kπ , with 1,...,i n  and 0,1,2,3k  , is prescribed in i , under the condition of 

null average strain in the whole UC, the solution is determined in form: 
 

    1 2 1 2, ,i i i
k k kx x x xq Q π   (no sum)      (21) 

 

with  1 2,i
k x xQ  representing the localization matrix associated to the presence of the inelastic strain contribution ˆ i

kπ  in 
i . It can be remarked that the field  1 2,i

k x xq  is periodic in  , so that its average in the UC is null, i.e. 0i
k q . The 

elastic strains in j  and e , due to ˆ i
kπ  in i , are obtained as: 

  , , , ,j j e ei i i i i i
k k ij k k k k k     η Q I π η Q π       (22) 

being , ji
k
Q  and , ei

k
Q  the restrictions of the field i

kQ  to i  and e  and 0 I I , 1 1xI I , 2 2xI I  and 3 1 2x xI I .  

Note that , ji
k
η  is the elastic strain in the sub-domain j  due to the presence of the inelastic strain contributions ˆ i

kπ , 

acting in the sub-domain i . 

It can be remarked that the strain field  1 2,i
k x xq  is characterized by non zero average stress: 
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     (23) 

with 
j j

j

k kV dV 



 I I . 

 
Overall behavior of UC 
Superposing the effects generated by the application of the average strain e  on the whole masonry UC and the inelastic 

strain contributions ˆ i
kπ  in each sub-domain i  ( 1,..,i n ), it is possible to evaluate the overall behavior of the UC. In 

fact, the overall average strain acting on the UC, is obtained as: 
 

   ε e q e            (24) 
 

Analogously, the overall average stress σ  is obtained as the sum of the average stress associated to e  and to ˆ i
kπ : 

 

  
3 3
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i
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n n
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j k j k   

      πeσ σ σ Ce S π C ε p       (25) 

 

where  

 
3

1

1 0

n
i i
k k

j k



 

 p C S π           (26) 

 

represents the overall inelastic strain. 
In order to evaluate the nonlinear behavior of the typical sub-domain, according to the model described in the previous 
section, it is necessary to evaluate the strain and the stress in suitable number of points of each sub-domain. It can be 
remarked that, as the inelastic strain is bilinear and it is obtained as sum of four contributions, the required number of 
points is equal at least to four. 

Thus, chosen a typical point  1 2,P PP x x  belonging to the sub-domain j  or e , the total and the elastic strains, 
jε  

and 
jη  as well as 

eε  and 
eη , are evaluated as: 
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As a consequence, the stresses at the typical point  1 2,P PP x x  of j  or e  result: 

    1 2 1 2, ,
j j jP P P Px x x x  σ C η         (29) 

    1 2 1 2, ,
e eP P B P Px x x x σ C η

         (30) 

It can be noted that in some cases the inelastic strain iπ  in some sub-domain i  ( 1,..,i n ) can be considered 
reasonably constant so that two types of sub-domains can be distinguished: 

- a set of sub-domain i  with 1,.., ci n , where iπ  is constant, i.e. 0
i iπ π  and 1 2 3

i i i  π π π 0 ; 

- a set of sub-domain ˆ i  with 1,.., li n , where iπ  is bilinear, given by formula (20). 
In such a case, the UC is subjected to: 
- the average strain e  on the whole masonry unit cell, 

- the inelastic constant strain iπ  in each sub-domain i  ( 1,.., ci n ). 

- the inelastic bilinear strain iπ  in each sub-domain ˆ i  ( 1,.., li n ). 
In order to evaluate the overall mechanical response of the UC, the procedure described above is simplified, assuming in 

the sub-domain i  with 1,.., ci n , 0
i iπ π . It can be emphasized that, in this sub-domain i , the nonlinear behavior 

can be governed by the average value of the total and elastic strains, evaluated as: 
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       (31) 
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     (32) 

 
NUMERICAL RESULTS 
 

ome numerical applications are carried out, in order to validate the proposed model and the developed nonlinear 
homogenization procedure. 
Two different masonries characterized by the same type of texture but different material and geometrical data, are 

considered. In particular, isotropic response of the blocks and mortar is assumed. The geometry and the material 
properties adopted for the computations are the following: 

 masonry M1 
o material 

for the block the elastic modulus and the Poisson ratio are set 16700 MPa BE  , 0.15B  , 

, 0.0001N o   and , 0.0004NT o  , , 1.67 MPaN o   and , 2,90MPaNT o  , 
20.00144 N/mmcIG   and 20.0058 N/mmcIIG   and =0.5 ; for the mortar it is set 

798 MPaME  , 0.11M  , , 0.0003N o   and , 0.001NT o  , , 0.24 MPaN o   and 

, 0.36 MPaNT o  , 20.00018 N/mmcIG   and 20.00126 N/mmcIIG   and =0.75 , if not 

differently specified; 

S 
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o geometry 
  210 mmb  ,   52 mmh  and   10 mms  ; 

 masonry M2 
o material 

for the block the elastic modulus and the Poisson ratio are set 18000 MPa BE  , 0.15B  , 

, 0.0001N o   and , 0.0004NT o  , , 1.80 MPaN o   and , 3,13MPaNT o  , 
20.00125 N/mmcIG   and 20.0125 N/mmcIIG   and =0.5 ,; for the mortar it is set 

1000 MPaME  , 0.15M  , , 0.0005N o   and , 0.001NT o  , , 0.50 MPaN o   and 

, 0.4348MPaNT o  , 20.00125 N/mmcIG   and 20.00217 N/mmcIIG   and =0.5 , if not 

differently specified; 
o geometry 

  240 mmb  ,   120 mmh   and   10 mms  . 
 
Computations are developed for walls characterized by unit thickness. 
The validation of the nonlinear numerical homogenization is performed comparing the results obtained by the proposed 
procedure with the ones determined by micromechanical Finite Element Analyses (FEA). In particular, a 2D 4-node finite 
element is formulated considering the different constitutive laws for bricks, head joints and bed joints and it has been 
implemented in the code FEAP [14]. In particular, the damage-plastic constitutive law described in Eqs. (1) – (12) is 
considered for mortar joints and for the block layer aligned with the mortar head joints, while the linear elastic 
relationship, Eq. (13), is assumed for elastic parts of the blocks. In order to avoid strain and damage localization in the 
mortar joints, a nonlocal integral model is adopted, defining the nonlocal equivalent strain measures as: 
 

 
 
 

*

*

Y dA
Y

dA

















x y

x y
         (33) 

 

where the subscript symbol   stands for H , V  or  , y  is a typical point where nonlinear constitutive law is assumed and 

  is the standard Gaussian weight function, namely: 
 

 

2

2
exp



 
  

 
 

x y
          (34) 

 

with   = 15 mm. The above nonlocal equivalent strain measures are then used to evaluate the strain ratios defined by 
formulas (10). 
As concerning the proposed numerical homogenization procedure, the adoption of a regularization technique should be 
not required because of the assumed distribution of the inelastic strain in each mortar joint.  
The nonlinear behavior of the masonry unit cell is investigated considering the two types of loading histories. 
 
First type of loading history 
The unit cell of masonry material is initially subjected to a constant compressive vertical strain and, then, to a tensile 
loading-unloading horizontal strain history, according to the scheme illustrated in Fig. 4 and to the following table: 
 

 t = 0 s t = 1 s t = 2 s t = 2 s 

22  0.0 p p p 

11  0.0 0.0 0.003 -0.0005 
 

In particular, three different values of the compressive average strain are considered: 22 0.0p   , 22 0.0004p     

and 22 0.0008p     in order to evaluate the influence of the compressive strain on the overall behavior of the 
masonry.   
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Figure 4: First type of loading history; constant vertical compression with cyclic horizontal strain. 

 
In Figs. 5 and 6, the mechanical response of the masonry unit cell subjected to the first type of loading history 
characterized by the material M1 and M2 is reported, respectively. In particular, the plots of the average normal stress 11  

in the unit cell versus the total average strain 11  are reported for the different values of the average compressive strains. 
In the Figures the results obtained by the proposed nonlinear homogenization TFA and the micromechanical analyses 
FEA are reported and compared.  
 

 
 

Figure 5: Mechanical response of the unit cell M1 subjected by the first loading history. 
 

 
 

Figure 6: Mechanical response of the unit cell M2 subjected by the first loading history. 
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It can be noted that initially, when the unit cell is subjected to the compressive strain 11 , a negative average normal stress 

11  arises, because of the Poisson effect; then, the behavior of the composite material is characterized by a linear 

response until the vertical mortar joint starts to damage. Then, also the horizontal joints start to damage. When the mortar 
joints are completely damaged a friction slip occurs. The unloading path is elastic, characterized by a stiffness reduced 
with respect to the initial one, because of the complete damage of the mortar joints. The reverse loading is characterized 
by the progressive reduction of the friction slip strain; when the vertical joint is closed, the unilateral effect occurs and the 
initial elastic stiffness of the unit cell is recovered. 
It can be pointed out that the results obtained by the nonuniform TFA and by the FEA are in very good accordance for 
all the three values of the average compressive strains. 
In Figs. 7 and 8 the mechanical response of the masonry unit cell for 22 0.0004p     is reported comparing the 

results obtained considering uniform TFA, i.e. assuming constant eigenstrains in all the 5 subsets j  with j=1..5 or 

nonuniform TFA characterized by constant eigenstrains in the subsets j  with j=1,2,3,5 and by bilinear eigenstrain in 

the subset 4  with 4 given by formula (20), for the material M1 and M2, respectively. It can be pointed out that for the 
material M2 the results obtained by the two analyses are quite in a good accordance, the uniform TFA becomes less 
accurate only in the unloading phase. For the material M1 characterized by a small dimension of the block, the results 

obtained by the uniform TFA are less accurate as in this case the nonlinear behavior of inclusion 4  more significantly 
influences the overall response of the unit cell respect to material M2.  
 

 
 

Figure 7: Mechanical response of the unit cell M1: comparison between TFA analyses. 
 

 
 

Figure 8: Mechanical response of the unit cell M2: comparison between TFA analyses. 
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Second type of loading history 
The unit cell of masonry material is subjected to a tensile loading vertical strain history, according to the scheme illustrated 
in Fig. 9 and to the following table: 
 

 t = 0 s t = 1 s

22  0.0 0.0008 

 

 
 

Figure 9: Second type of loading history; vertical strain. 
 

In Fig.s 10 and 11, the mechanical response of the masonry unit cell subjected to the second type of loading history is 
reported for the material M1 and M2, respectively. In particular, the plot of the average normal stress 22  in the unit cell 

versus the total average strain 22  is given for the following three different analyses: 

- uniform TFA with consti   for i=1..5, 

- nonuniform TFA with 4 given by formula (20), 
- FEA micromechanical analysis.  

The unit cell demonstrates a pure damage mechanical response. In fact, the behavior of the masonry in vertical direction 
is characterized, initially, by a linear response until the horizontal mortar joints start to damage, and then, by a softening 
branch until the horizontal joints are completely damaged. The inelastic behavior of the unit cell is due to the damage 
effect, as no plastic strains occur. When the damage in the horizontal mortar joints is complete the normal stress 22  
goes to zero. It can be noted that the results obtained by the TFA analyses are in very good accordance while the FEA 
results slightly differs from the others only in the softening phase. 
 

 
 

Figure 10: Mechanical response of the unit cell M1 subjected by the second loading history. 
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Figure 11: Mechanical response of the unit cell M2 subjected by the second loading history. 
 
 

CONCLUSIONS 
 

 nonuniform TFA technique has been proposed. The unit cell, representative of the periodic composite material, 
is regarded as the union of subsets, some of which present a nonlinear behavior. The nonlinearities in these 
subsets are accounted for by means of eigenstrain. The main and nontrivial novelty of the paper consists in 

assuming that the eigenstrain the each subset is not constant but it has a bilinear shape.  
Numerical results, developed for different masonry UCs, show the effectiveness of the proposed technique. In fact, the 
uniform TFA results less accurate when the dimensions of the block are smaller so the nonlinear behavior of the head-
bed mortar intersection more significantly influences the overall mechanical response of the UC. The numerical results 
shows that the results obtained by the nonuniform TFA are in good accordance with the once obtained by 
micromechanical finite element analyses.  
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