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ABSTRACT

The size effects in compression on drilled cylindrical aete specimens obtained from a unique concrete block
over a large scale range (1:19) are analyzed. The expedhmesults show scale effects on dissipated energy
density rather than on the compressive strength. A theattetkplanation for such a phenomenon is presented,
assuming a noninteger physical dimension of the sub-domlaére dissipation occurs. A comparison between
experimental and theoretical values is discussed and amafiaation procedure to obtain a scale independent
constitutive law is presented. A scale-independent ciomist law in compression is put forward, which permits
to define a unique relationship for softening in concretds Boal is achieved by defining a fractal strain (or
dilatation) whose fractal dimension is related to the sabdin in which energy dissipation occurs.

INTRODUCTION

The variation of the compressive strength with size andhiedipmeter (or slenderness) ratio is
relevant when the rigid test machine platens are in direaotad with the concrete specimen,
the lateral deformation of concrete being restrained aspgeeimen ends. In this context, a wide
investigation has been carried out by Carpinteri et al.\J\ien, instead, the friction at the specimen
ends is reduced, the strength variation is less evident.

Van Vliet and van Mier [2], using improved experimental teitjues of axial displacement control
and lubricated end platens as well as variable height toeti@nnatios, observed that post-peak data
from uniaxial compression experiments on plain concreggest a stress-displacement rather than
a stress-strain relation.

An experimental investigation on geometrically similafiegirical concrete specimens, obtained
by a unique concrete block in compression over a very largle sange (1:19), will be brifly reported
citecompressionel and the obtained scale effects will beiméiscussed. It will be shown how,
avoiding friction, the strength is almost independent @&fcmen dimension while strong variations
are observed for dissipated energy density. This phenomearo be interpreted by considering the
fragmentation and the comminution theories. In this fieldckal Geometry represents a very helpful
tool to explain such a phenomenon.

A theoretical explanation for the scale effects on the datsid energy density in compression, is
discussed and applied to the experimental results. Frorth#wey it can be evidenced how, in the
scale range of the tested specimens, the energy dissimetboms in a sub-domain with a noninteger
physical dimension.

EXPERIMENTAL EVIDENCE

In this section, the experimental tests performed at tha@geoico di Torino are briefly presented.
All the cylinder were obtained by drilling from a unique coete block with sizes 80& 500 x200

mm. The microconcrete used for the specimens is charagetely a maximum aggregate size of 4
mm, with a compression strength, obtained by cubes (380 x 150 mm) after 28 days, equal to

33 N/mn?. The water-cement ratio was equal to 0.65.



d=190 mm

Scale range = 1:19

d= 100 mm

Figure 1. (a) Geometries of the five different concrete speans; (b) overall view of the five specimen sizes.

Five different diameters were considered in relation todisposable drilling core-bits in a scale
range of 1:19. The specimens were cylinders with a heigidier ratich /d =1 andd chosen as
characteristic dimension equal to 10, 23, 45, 100, 190 mape®ively. Six specimens have been
tested ford= 10, 23 and 45 mm and four specimensdsr100 and 190 mm. The geometries of the
tested specimens are presented in Fig. 1. For the threeestnsiltes, the tests were carried out on a
uniaxial compression machine with a capacity of 100 kN. Tlaelne was controlled by a closed-
loop servo-hydraulic system. All compression tests witls thachine have been performed under
displacement control, by imposing a constant rate of thelaiement of the upper loading platen.
For the two remaining specimen size&;100 (C4) and 190 mm (C5), a manual load controlled
uniaxial compression machine with a capacity of 3000 kN wsesiu

The system adopted in the present compression tests focinedfriction at the ends of the
specimens comes out from the analysis of the RILEM Tech@oahmittee 148 SSC (1997) results.
These results suggested us to use two teflon layers ofifrbthickness with oil in between and a
specimen slenderness equal to one.

The experimental load vs. displacement diagrams can balfouf8]. The values of the peak-
stresses, which are commonly callemmpressive strength, can be deduced from Fig.3a by varying
the specimen sizes. It can be noticed how, reducing fricianarked size effect does not come out,
as instead can be evidenced in tension [4, 5, 6] or in comipresgen localization is present [1].
The scatter in the results is not pronounced and even fomntladlesst size the values are comparable
to the compressive strength of standard cubes. This peton@iirm that, if friction is avoided or
drastically reduced, the compressive strength of an egistbncrete structure can be evaluated using
very small drilling core specimens.

The dissipated energy density can be evaluated by considdre area under thB — § curve
divided by the volume of the specimen. This is equivalentiasider the area under the stress-strain
curve. The values of the dissipated energy density arespletrsus the characteristic specimen size
in Fig. 2. They undergo severe scale effects. The trend isceedse by increasing the specimen
dimension.

FRACTAL EXPLANATION OF SIZE EFFECT ON DISSIPATED ENERGY DEBTY IN
COMPRESSION

The performed compression tests have shown an evidentadecd dissipated energy density
with increasing specimen dimension (Fig. 2). This inténgstphenomenon can be interpreted
by considering the fragmentation and the comminution tlesotn this field, Fractal Geometry

represents a very helpful tool. Turcotte [7] in the formidabf his fragmentation theory explains the
difficulties in developing comprehensive theories. A priyneeason is that fragmentation involves
initiation and propagation of fractures. Fracture propiagas a highly nonlinear process requiring
complex models even for the simplest configuration. Fradatiem involves the interaction between
fractures over a wide range of scales. If fragments are pedlover a wide range of sizes and if
natural scales are not associated with the fragmented ialafesctal distribution of number versus

size would seem to be expected. The statistical numbeditéution for a large number of objects



can be fractal [7, 8].

Let us consider a concrete specimen which undergoes a cesigmetest. In the post-peak
softening regime the specimen is characterized by the géaerof a large number of fragments.
After fragmentation, the number of fragmem¥swith a characteristic linear dimension greater than
r should satisfy the relation:

B
whereB is a constant of proportionality, ard is the fractal dimension.

It can be assumed that the energy dissipated to produce areewdrface in the fragmentation
process is provided by the product of specific energy absgrtapacity5r and the total surface
aready, for2 < D < 3[9]:

W= A = rAs, @

in which 8 should be have dimension gF][L](P—1). If we suppose that,, . is proportional to
the size of the fragmented object, wittthe constant of proportionality; can be expressed as:
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The two extreme cases contemplated by eq.(4)&2, surface theory [10, 11], when the dissipation

really occurs on a surfacéi{ « V§) and byD=3, volume theory [12], when the dissipation occurs
in a volume {7 « V). In this cas&j}. presents the following physical dimension:
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For D =2 — [G}] = [F][L]™*, which is the canonical dimension for fracture energy, e/tidr
D =3 — [Gx] = [F][L]~2, which is the physical dimension of stress. The experimeases of
fragmentation are usually intermediate & 2.5) [8], as well as the size distribution for concrete
aggregates due to Fuller [13]. If we considér= [, we can write the expression of the dissipated
energy density, from eq.(4):
w
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The relationship of dissipated energy density related fferdint sizes can be posed in logarithmic
form:

log S =log Gy + (D — 3) logl. (7

Eq.(7) represents a straight line with sloge — 3) in the log S versus logl plane (Fig. 2.a). If
D =2, the slope is-1, as well asD = 3 implies a vanishing slope.

As may be observed from Fig.2a, the slope of the dissipatetdggrndensity decrease proves
to be equal to 0.97. The physical meaning reveals an eneggjpdtion on a fractal space of
dimension 2.03, which appears to be very close to a 2-dirneaksurface. It is therefore possible to
obtain a constant (universal) dissipated energy densitgleq 74 Nmnt -3 (Fig.2b). The graphic
interpretation of the renormalization procedure is giveRig.2. The assumption of a fractal physical
dimension allows the determination of the dissipated gndemsity parametey;., which results to
be independent of the scale. As it is easy to observe, in tter lzase the renormalized dissipated
energy density tends to be a fracture energy, the dissipatiourring on a fractal set very close to a
2-dimensional surface. Such a result confirms the locaaatf the dissipation on a surface [14].
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Figure 2. (a) Size effect on dissipated energy density (@x@atal tests); (b) Renormalized value of dissipated
energy density for the experimental tests.

RENORMALIZED DIAGRAMS OF STRUCTURAL RESPONSE

The experimental curves vs e, reported in Fig.3a, show a marked scale dependence, iicydart
for what concerns the post-peak part. These cusves ¢, or F' vs. §, are in fact characterized
by two different regimes. The first regime corresponds to phexpeak elastic behavior, when
microcracks form randomly in the specimen. At this stage ekeernal force linearly increases
untill it reaches the peak value and the statistical fluatnatare very small. In the second regime,
which could be called "catastrophic”, the interactionswastn the microcracks begin to rule the
process, untill macrofractures form and propagate thrdlighvhole specimen. In large specimens
this phenomenon could occur with a sudden release of sttasticeenergy.

In this section, a renormalization procedure is proposetbtain a unique constitutive relationship
for softening in compression. By assuming damage occuirirg fractal sub-domain inside the
specimen, energy dissipation becomes scale-dependeartekteshould be substituted by a fractal
quantity, which is the true material constant. The asswnpthat the energy dissipation occurs
in a sub-domain characterized by a fractal dimension, irepdlse definition of fractal strain (or
dilatation).

Let us consider the external woik’, which presents the physical dimension of [F][L]. The
nominal dissipated energy densify,= W/V, is usually the dissipated energy over the specimen
volume, so that it presents the physical dimension of [F]iLjnd can be evaluated by integration:

S = g = /0 o o(€)de, (8)

which represents the area under ¢he € curve. Supposing that the energy dissipation occurs not in
the specimen volumé/ %) but in a fractal domain of dimensialR (V' « [”), and considering

[0] = [F][L]~? as the nominal stress, in order to obtain a constant speoifipression energy, the
strain has to assume a physical dimensiofLdf (°—3) = [L]%~ [15, 16]. In fact, in this hypothesis,

if W is dissipated over a domain with physical dimension ofLijve obtain:

[S]= 77 = = [FI[L]'7P. 9)




For D=2 (surface theory, dissipation occurring on a surfaee)S = [F][L]~!, while for D=3
(volume theory, dissipation occurring on a volume) S = [F][L]~2. Assuming to maintain the
the nominal stress with physical dimension ofF][L]~2, from eq.8 we have:

[S] = [o]le"] = [FI[L]?[L)" = [F][L]'77, (10)

and than:

x=3—-—D=d,. (11)
In the monofractal hypothesis, the renormalized strainetioee assumes the physical dimension of
[L]3~P, defined as the displacemestdivided byi=[L] ? 2.

By considering the fractal strain, a scale-invariant citutste relationship can be obtained. In
other words, the experimental diagrams related to therdiffesizes can be rescaled by considering
the strain renormalization, and a clear superposition@ttirves is evidenced. In Fig.3.b the strains
are renormalized foD=2.03. It is possible to observe how the curves tend to sserpne on each
other and in particular how the variation in structural bébar disappears.

Lastly, form Fig.3b, it can be observed how a renormalizaf@r a new definition) of the elastic
modulus comes out. In fact, the elastic modulus is define fihe classical Hooke Law’s, as the
ratio between the stress and the strain. In the presentsinalg obtain:

ST 0
] 2=
and in the two limit cases foD = 2 (surface theory, dissipation occurring on a surfaee)

E=[F][L] ~3, and assumes the physical dimension of a density, whiléXet 3 (volume theory,
dissipation occurring on a volume} E=[F][L] ~2 and we obtain the classical elastic modulus.

= [FIIL]"~, (12)

50 T T T T 50 T T T T T T T T T T
2 L 4
o (N/mm?) [ [N/mm?] (b) ]
40 1 40l ]
30 [ 1 a0l ]

cI3 I
20 [ ]l 2L ]
c21 I o ]
10 1 10 . ]
c33 & [mm"”]
1 C33 ]
0 C414 I L I gl ] 0 L 'C'21' ]
0.0 0.1 0.2 0.3 0.4 0.5 0.0 2.0 4.0 6.0 8.0 10.0

Figure 3. (a) Stress-strain curves for four different aytinal specimen sizes; (b) Stress vs renormalized strain
for four different specimen size9=2.03.

The renormalization strain has a physical dimension equd.®7, very close to 1, and then
very close to a displacement. What is important to emphagizlkis stage is that in compression
we have dissipation of the energy over an area at small soaléle at large scales the energy
dissipation occurs in a volume. This appears very intargss it is the opposite trend with respect
to tension, in which localization is evident for large speens and not at small scales. Eventually,
the renormalization procedure for large specimdns3) tends again to a stress-strain diagram, as
€ =e



CONCLUSIONS

The uniaxial compression tests performed under displaceroentrol on drilled cylindrical
specimens obtained by a unique concrete block over a vagg Erale range (1:19) have confirmed
as the scale effect on compressive strength is not as ewadenttraction. The experimental results
have instead manifested a strong scale effect on dissipatdy density, showing a sharp decrease
of that quantity by increasing specimen size.

The hypothesis of energy dissipation in a sub-domain witysfglal dimension between 2 and
3 can be effective to justify such a phenomenon. It can bergbdéhow, when energy dissipation
occurs in the volumelp=3) no scale effects are present, whereas when energyatissippccurs
over an arealp=2) the scale effects are characterized in the bilogarithti@igram logS versus log
[ by alinear law with slope equal tel. By fitting the experimental values, we obtain an intermedia
case, and a renormalized value for dissipated energy gemmsiariant with scale, can be obtained.
This scale invariant value is characterized by noninteggsigal dimensions. This hypothesis works
very well in the size range of the tested specimens.

A renormalization procedure for strain (or dilation) hasbesventually proposed in order to
obtain a scale-invariant stress vs renormalized straigrdia.
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