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ABSTRACT

The size effects in compression on drilled cylindrical concrete specimens obtained from a unique concrete block
over a large scale range (1:19) are analyzed. The experimental results show scale effects on dissipated energy
density rather than on the compressive strength. A theoretical explanation for such a phenomenon is presented,
assuming a noninteger physical dimension of the sub-domainwhere dissipation occurs. A comparison between
experimental and theoretical values is discussed and a renormalization procedure to obtain a scale independent
constitutive law is presented. A scale-independent constitutive law in compression is put forward, which permits
to define a unique relationship for softening in concrete. This goal is achieved by defining a fractal strain (or
dilatation) whose fractal dimension is related to the sub-domain in which energy dissipation occurs.

INTRODUCTION

The variation of the compressive strength with size and height-diameter (or slenderness) ratio is
relevant when the rigid test machine platens are in direct contact with the concrete specimen,
the lateral deformation of concrete being restrained at thespecimen ends. In this context, a wide
investigation has been carried out by Carpinteri et al. [1].When, instead, the friction at the specimen
ends is reduced, the strength variation is less evident.

Van Vliet and van Mier [2], using improved experimental techniques of axial displacement control
and lubricated end platens as well as variable height to diameter ratios, observed that post-peak data
from uniaxial compression experiments on plain concrete suggest a stress-displacement rather than
a stress-strain relation.

An experimental investigation on geometrically similar cylindrical concrete specimens, obtained
by a unique concrete block in compression over a very large scale range (1:19), will be brifly reported
citecompressione1 and the obtained scale effects will be herein discussed. It will be shown how,
avoiding friction, the strength is almost independent of specimen dimension while strong variations
are observed for dissipated energy density. This phenomenon can be interpreted by considering the
fragmentation and the comminution theories. In this field, Fractal Geometry represents a very helpful
tool to explain such a phenomenon.

A theoretical explanation for the scale effects on the dissipated energy density in compression, is
discussed and applied to the experimental results. From thetheory it can be evidenced how, in the
scale range of the tested specimens, the energy dissipationoccurs in a sub-domain with a noninteger
physical dimension.

EXPERIMENTAL EVIDENCE

In this section, the experimental tests performed at the Politecnico di Torino are briefly presented.
All the cylinder were obtained by drilling from a unique concrete block with sizes 800× 500×200
mm. The microconcrete used for the specimens is characterized by a maximum aggregate size of 4
mm, with a compression strength, obtained by cubes (150× 150× 150 mm) after 28 days, equal to
33 N/mm2. The water-cement ratio was equal to 0.65.
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Figure 1. (a) Geometries of the five different concrete specimens; (b) overall view of the five specimen sizes.

Five different diameters were considered in relation to thedisposable drilling core-bits in a scale
range of 1:19. The specimens were cylinders with a height-diameter ratioh/d =1 andd chosen as
characteristic dimension equal to 10, 23, 45, 100, 190 mm, respectively. Six specimens have been
tested ford= 10, 23 and 45 mm and four specimens ford= 100 and 190 mm. The geometries of the
tested specimens are presented in Fig. 1. For the three smallest sizes, the tests were carried out on a
uniaxial compression machine with a capacity of 100 kN. The machine was controlled by a closed-
loop servo-hydraulic system. All compression tests with this machine have been performed under
displacement control, by imposing a constant rate of the displacement of the upper loading platen.
For the two remaining specimen sizes,d=100 (C4) and 190 mm (C5), a manual load controlled
uniaxial compression machine with a capacity of 3000 kN was used.

The system adopted in the present compression tests for reducing friction at the ends of the
specimens comes out from the analysis of the RILEM TechnicalCommittee 148 SSC (1997) results.
These results suggested us to use two teflon layers of 150µm thickness with oil in between and a
specimen slenderness equal to one.

The experimental load vs. displacement diagrams can be found in [3]. The values of the peak-
stresses, which are commonly calledcompressive strength, can be deduced from Fig.3a by varying
the specimen sizes. It can be noticed how, reducing friction, a marked size effect does not come out,
as instead can be evidenced in tension [4, 5, 6] or in compression when localization is present [1].
The scatter in the results is not pronounced and even for the smallest size the values are comparable
to the compressive strength of standard cubes. This permitsto affirm that, if friction is avoided or
drastically reduced, the compressive strength of an existing concrete structure can be evaluated using
very small drilling core specimens.

The dissipated energy density can be evaluated by considering the area under theP − δ curve
divided by the volume of the specimen. This is equivalent to consider the area under the stress-strain
curve. The values of the dissipated energy density are plotted versus the characteristic specimen size
in Fig. 2. They undergo severe scale effects. The trend is a decrease by increasing the specimen
dimension.

FRACTAL EXPLANATION OF SIZE EFFECT ON DISSIPATED ENERGY DENSITY IN
COMPRESSION

The performed compression tests have shown an evident decrease of dissipated energy density
with increasing specimen dimension (Fig. 2). This interesting phenomenon can be interpreted
by considering the fragmentation and the comminution theories. In this field, Fractal Geometry
represents a very helpful tool. Turcotte [7] in the formulation of his fragmentation theory explains the
difficulties in developing comprehensive theories. A primary reason is that fragmentation involves
initiation and propagation of fractures. Fracture propagation is a highly nonlinear process requiring
complex models even for the simplest configuration. Fragmentation involves the interaction between
fractures over a wide range of scales. If fragments are produced over a wide range of sizes and if
natural scales are not associated with the fragmented material, fractal distribution of number versus
size would seem to be expected. The statistical number-sizedistribution for a large number of objects



can be fractal [7, 8].
Let us consider a concrete specimen which undergoes a compression test. In the post-peak

softening regime the specimen is characterized by the generation of a large number of fragments.
After fragmentation, the number of fragmentsN with a characteristic linear dimension greater than
r should satisfy the relation:

N =
B

rD
, (1)

whereB is a constant of proportionality, andD is the fractal dimension.
It can be assumed that the energy dissipated to produce a new free surface in the fragmentation

process is provided by the product of specific energy absorbing capacityβF and the total surface
areaAf , for 2 < D < 3 [9]:

W = βF Af = βF Af
V

V
(2)

in which βF should be have dimension of[F ][L](D−1). If we suppose thatrmax is proportional to
the size of the fragmented object, withk the constant of proportionality,V can be expressed as:

V = V D/3Vf
3−D

−DB
kD−3 =

r3
max

k3
. (3)

In this case it is possible to have:

W = βF Af
V

V
= βF Af

VfV D/3 3−D

−DB
kD−3

r3
max

k3

=

(

βf
−BCD

D − 2
r2−D
min rD

maxkD

)

V
D

3 = G∗

F V
D

3 . (4)

The two extreme cases contemplated by eq.(4) areD=2, surface theory [10, 11], when the dissipation
really occurs on a surface (W ∝ V

2

3 ) and byD=3, volume theory [12], when the dissipation occurs
in a volume (W ∝ V ). In this caseG∗

F presents the following physical dimension:

[G∗

F ] =

(

βf
−BCD

D − 2
r2−D
min rD

maxkD

)

= [F ][L]D−1[L]2−D[L]−D = [F ][L]1−D. (5)

For D = 2 → [G∗

F ] = [F ][L]−1, which is the canonical dimension for fracture energy, while for
D = 3 → [G∗

F ] = [F ][L]−2, which is the physical dimension of stress. The experimental cases of
fragmentation are usually intermediate (D ∼= 2.5) [8], as well as the size distribution for concrete
aggregates due to Fuller [13]. If we considerV = l3, we can write the expression of the dissipated
energy density, from eq.(4):

S =
W

V
= G∗

F lD−3. (6)

The relationship of dissipated energy density related to different sizes can be posed in logarithmic
form:

logS = logG∗

F + (D − 3) log l. (7)

Eq.(7) represents a straight line with slope(D − 3) in the logS versus logl plane (Fig. 2.a). If
D = 2, the slope is−1, as well asD = 3 implies a vanishing slope.

As may be observed from Fig.2a, the slope of the dissipated energy density decrease proves
to be equal to 0.97. The physical meaning reveals an energy dissipation on a fractal space of
dimension 2.03, which appears to be very close to a 2-dimensional surface. It is therefore possible to
obtain a constant (universal) dissipated energy density equal to 74 Nmm−1.03 (Fig.2b). The graphic
interpretation of the renormalization procedure is given in Fig.2. The assumption of a fractal physical
dimension allows the determination of the dissipated energy density parameterG∗

F , which results to
be independent of the scale. As it is easy to observe, in the latter case the renormalized dissipated
energy density tends to be a fracture energy, the dissipation occurring on a fractal set very close to a
2-dimensional surface. Such a result confirms the localization of the dissipation on a surface [14].
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Figure 2. (a) Size effect on dissipated energy density (experimental tests); (b) Renormalized value of dissipated
energy density for the experimental tests.

RENORMALIZED DIAGRAMS OF STRUCTURAL RESPONSE

The experimental curvesσ vs ε, reported in Fig.3a, show a marked scale dependence, in particular
for what concerns the post-peak part. These curvesσ vs ε, or F vs. δ, are in fact characterized
by two different regimes. The first regime corresponds to thepre-peak elastic behavior, when
microcracks form randomly in the specimen. At this stage theexternal force linearly increases
untill it reaches the peak value and the statistical fluctuations are very small. In the second regime,
which could be called ”catastrophic”, the interactions between the microcracks begin to rule the
process, untill macrofractures form and propagate throughthe whole specimen. In large specimens
this phenomenon could occur with a sudden release of stored elastic energy.

In this section, a renormalization procedure is proposed toobtain a unique constitutive relationship
for softening in compression. By assuming damage occurringin a fractal sub-domain inside the
specimen, energy dissipation becomes scale-dependent. Hence it should be substituted by a fractal
quantity, which is the true material constant. The assumption that the energy dissipation occurs
in a sub-domain characterized by a fractal dimension, imposes the definition of fractal strain (or
dilatation).

Let us consider the external workW , which presents the physical dimension of [F][L]. The
nominal dissipated energy density,S = W/V , is usually the dissipated energy over the specimen
volume, so that it presents the physical dimension of [F][L]−2 and can be evaluated by integration:

S =
W

V
=

∫ εmax

0

σ(ε)dε, (8)

which represents the area under theσ − ε curve. Supposing that the energy dissipation occurs not in
the specimen volume (V ∝ l3) but in a fractal domain of dimensionD (V ∝ lD), and considering
[σ] = [F ][L]−2 as the nominal stress, in order to obtain a constant specific compression energy, the
strain has to assume a physical dimension of[L]−(D−3) = [L]dω [15, 16]. In fact, in this hypothesis,
if W is dissipated over a domain with physical dimension of [L]D, we obtain:

[S] =
[W ]

[V ]
=

[F ][L]

[L]D
= [F ][L]1−D. (9)



For D=2 (surface theory, dissipation occurring on a surface)→ S = [F ][L]−1, while for D=3
(volume theory, dissipation occurring on a volume)→ S = [F ][L]−2. Assuming to maintain the
the nominal stressσ with physical dimension of[F ][L]−2, from eq.8 we have:

[S] = [σ][ε∗] = [F ][L]−2[L]x = [F ][L]1−D, (10)

and than:
x = 3−D = dω. (11)

In the monofractal hypothesis, the renormalized strain therefore assumes the physical dimension of
[L] 3−D, defined as the displacementsδ divided byl=[L] D−2.

By considering the fractal strain, a scale-invariant constitutive relationship can be obtained. In
other words, the experimental diagrams related to the different sizes can be rescaled by considering
the strain renormalization, and a clear superposition of the curves is evidenced. In Fig.3.b the strains
are renormalized forD=2.03. It is possible to observe how the curves tend to superpose one on each
other and in particular how the variation in structural behaviour disappears.

Lastly, form Fig.3b, it can be observed how a renormalization (or a new definition) of the elastic
modulus comes out. In fact, the elastic modulus is defined, from the classical Hooke Law’s, as the
ratio between the stress and the strain. In the present analysis we obtain:

[E∗] =
[σ]

[ε∗]
=

[F ][L]−2

[L]−(D−3)
= [F ][L]D−5, (12)

and in the two limit cases forD = 2 (surface theory, dissipation occurring on a surface)→

E=[F][L] −3, and assumes the physical dimension of a density, while forD = 3 (volume theory,
dissipation occurring on a volume)→ E=[F][L] −2 and we obtain the classical elastic modulus.
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Figure 3. (a) Stress-strain curves for four different cylindrical specimen sizes; (b) Stress vs renormalized strain
for four different specimen sizesD=2.03.

The renormalization strain has a physical dimension equal to 0.97, very close to 1, and then
very close to a displacement. What is important to emphasizeat this stage is that in compression
we have dissipation of the energy over an area at small scales, while at large scales the energy
dissipation occurs in a volume. This appears very interesting as it is the opposite trend with respect
to tension, in which localization is evident for large specimens and not at small scales. Eventually,
the renormalization procedure for large specimens (D=3) tends again to a stress-strain diagram, as
ε∗ = ε



CONCLUSIONS

The uniaxial compression tests performed under displacement control on drilled cylindrical
specimens obtained by a unique concrete block over a very large scale range (1:19) have confirmed
as the scale effect on compressive strength is not as evidentas in traction. The experimental results
have instead manifested a strong scale effect on dissipatedenergy density, showing a sharp decrease
of that quantity by increasing specimen size.

The hypothesis of energy dissipation in a sub-domain with physical dimension between 2 and
3 can be effective to justify such a phenomenon. It can be observed how, when energy dissipation
occurs in the volume (D=3) no scale effects are present, whereas when energy dissipation occurs
over an area (D=2) the scale effects are characterized in the bilogarithmic diagram logS versus log
l by a linear law with slope equal to−1. By fitting the experimental values, we obtain an intermediate
case, and a renormalized value for dissipated energy density, invariant with scale, can be obtained.
This scale invariant value is characterized by noninteger physical dimensions. This hypothesis works
very well in the size range of the tested specimens.

A renormalization procedure for strain (or dilation) has been eventually proposed in order to
obtain a scale-invariant stress vs renormalized strain diagram.
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