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Abstract 
A new energy-based theory, Quantized Fracture Mechanics (QFM), is presented that modifies continuum-
based fracture mechanics. The differentials in Griffith’s criterion are substituted with finite differences; the 
implications are remarkable. Fracture of tiny systems with a given geometry and type of loading occurs at 
quantized stresses that are well predicted by QFM. QFM is self-consistent, agreeing to first-order with 
linear elastic fracture mechanics (LEFM), and to second-order with non-linear fracture mechanics (NLFM): 
the equation of the R-curve is consequently derived. For vanishing crack length QFM predicts a finite ideal 
strength in agreement with Orowan’s prediction. The different fracture Modes (opening I, sliding II and 
tearing III), and the stability of the fracture propagations, are treated in a simple way. In contrast to LEFM, 
QFM has no restrictions on treating defect size and shape. As an example, strengths predicted by QFM 
are compared with experimental and numerical results on carbon nanotubes containing defects of 
different size and shape. 
 
Introduction  
Two classic treatments of Linear Elastic Fracture Mechanics (LEFM) are Griffith’s criterion [1], an energy-
based method, and a method based on the stress-intensity factor [2]; as a matter of fact, they are 
equivalent [3]. Since Fracture Mechanics can be applied only to “large” sharp cracks, we choose to modify 
fracture mechanics, by accounting for the discontinuous nature of matter. By substituting the differentials 
in Griffith’s criterion with finite differences, a much more flexible theory, without ad hoc assumptions (e.g., 
as in the well-known “Equivalent” or “Quasi” LEFM that considers ad hoc fictitious crack lengths (of the 
order of the real crack length plus the size of the plastic zone) as “Irwin suggested (rather than provided a 
conclusive argument)…”, see [4]), results. We call this theory Quantized Fracture Mechanics (QFM) and 
show that QFM includes LEFM and Non Linear Fracture Mechanics (NLFM) as limiting cases and that it 
can be applied in a simple way and analytically. QFM is particularly relevant to the fracture of tiny 
structures, such as of nanotubes (or nanowires or nanoplates) that play, and will play, a central role in 
nanotechnology applications. Thus, a comparison between QFM and experimental/numerical 
investigations on strength and fracture of defective nanotubes concludes the paper. 

 
Quantized Fracture Mechanics  
We assume a quantization of Griffith’s criterion to account for discrete crack propagation, and thus in the 
continuum hypothesis, differentials are substituted with finite differences, i.e., d  [5]. According to the 
principle of conservation of energy, Griffith’s energy criterion implies a crack propagation when the sum of 
the variation of the total potential energy d  and of the kinetic energy , corresponding to a virtual 
increment of the crack surface , becomes equal to the energy spent to create the new free crack 
surface, i.e., , where G

∆→

W Td
Ad

0=Addd ++ GTW IC ICIC γ2=  is the fracture energy (per unit area created) of 
the material. The factor of 2 accounts for the creation of two surfaces during crack formation. For quasi 
static crack growth d 0≈T  and the energy release rate is defined as AW dGI d−=  (where the 

derivation is evaluated at constant displacement), and Griffith’s criterion is simply G . The stability 
of the fracture equilibrium can e evaluated by the sign of the second derivative of the energy at the 
incipient crack propagation: if 

ICG=I
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unstable. It is well known that Griffith’s criterion [1] is equivalent to the stress-intensity factor based 
criterion [2] for brittle crack propagation, if the stress-intensity  and its critical value  (the fracture IK ICK



toughness of the material) are assumed to be equal [3]. According to LEFM [3], 
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On the other hand, in QFM ( ∆→d ) Eqs. (1) become [5]:  
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. QFM assumes “dissipation energy” in quanta G  where A∆  is the 

fracture quantum. Eqs. (1b) and (2b) are valid only for pure modes of crack propagation. For mixed 
modes, Eqs. (1a) and (2a) can in principle be applied; the crack should propagate in the direction (that at 
nanoscale could be quantized) that maximizes the energy release rate G (LEFM, [6]) or correspondingly 

 (QFM). Values for the stress intensity factors  are available [7] for the most interesting cases. 

QFM involves simply evaluating  according to Eq. (2b), which also allows the stability of the 
process to be predicted in an analytical way. We thus propose QFM as a useful method for studying the 
strength of solids containing any shape or size defects. The hypothesis on which QFM is based is simply 
on discrete crack propagation in a linear elastic continuum medium. 
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Finally we show that LEFM and NLFM are limit cases of QFM. In NLFM the material property G  is 

replaced by an ad hoc “material” resistance R (known as the R-curve) that increases, tending to G , by 
increasing the crack length. NLFM can be summarized as [8]:  
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(Dynamic crack propagation is characterized by an excess of energy G − , which is converted into 
kinetic energy.) Combining the conditions for crack propagation in Eq. (2a) and Eq. (3a), it follows that 
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Eq. (2a) corresponds to Eq. (1) at the first-order approximation of QFM (i.e., I order QFM LEFM), and to 



Eq. (3a) at the second order approximation of QFM (i.e., II order QFM NLFM), so that the equation of 
the R-curve in our treatment becomes: 
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The classical limit of applicability of the R-curve in the NLFM treatment is that it is found as a function of 
the structure’s geometry and not only as a material property; until now, it has been considered an 
experimental parameter [8]. QFM clarifies and quantifies in a very simple way the meaning of the R-curve 
(and why it must be expected a function of the geometry and, as a consequence, not a material property!).  

In the context of discrete approaches, we have to note that Seweryn [9] proposed a similar non-
local approach based on energy, but without reaching our final analytical result; it formulation is complex 
also to be treated numerically. On the other hand, Novozhilov [10] proposed a simple discrete approach 
but based on stresses: not the maximum stress but its mean value along a fracture quantum becomes 
critical during fracture propagation; it can be considered the QFM stress analog. Similarly, the QFM strain 
analog has been also proposed [5].  
 
The example of the Griffith’s case  
Consider Griffith’s case of a linear elastic infinite plate in tension, of uniform thickness t, with a crack of 
length 2l orthogonal to the applied far field (crack opening Mode I). The material is described by the 
fracture toughness  and by the fracture quantum at the considered size-scale . From LEFM, ICK atA ≡∆

( ) llK I πσ= , where σ  is the applied far field stress. According to LEFM the crack will propagate 
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corresponding predictions for the failure strength of the plate are: 
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For 0→la  (i.e., large cracks) LEFM and QFM converge, whereas for ∞→l  (i.e., short cracks) they 
diverge. LEFM incorrectly predicts an infinite strength, whereas QFM (as the Quasi-LEFM, see [4]) 
predicts a reasonable finite strength: assuming that at the atomic scale the fracture quantum corresponds 
to the atomic size, the ideal strength predicted by QFM (against the considered fracture propagation) is 
identical to Orowan’s prediction [11] if multiplied by a factor of 4π . On the other hand from Eq. (4), at 

larger size scale the fracture quantum is expected to be of the order of ( )222 CICKa πσ≈ , with  
material strength at the considered size scale.   

Cσ

For Griffith’s case, brittle crack propagation is predicted to be unstable for both LEFM and QFM 
theories, i.e., ( ) 0dd 22 >= lKlK ICCI  and, ( ) ( 0222* +=∆ alKaK ICCI .  

Applying Eq. (3b) to this case, we find the R-curve as: )laGR IC 2= , exactly of the expected 
form [8].  

Extending the QFM result from sharp to blunt-cracks (using the asymptotic correction for the stress-
intensity factor derived in [12]), we find: 
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where ρ  is the tip radius and ( )0,0 === ρσσ lfC  (coincident with the ideal strength at nanoscale). 

Note that, if the continuum hypothesis is made ( 0, →ρala ), Eq. (5) yields practically the same result 
as the classical tensional approach (maximum stress equal to material strength) coupled with Elasticity, 
for which the stress concentration fC σσ  is ρρ ll 22 ≈+1  (small radii). On the other hand, Eq. 
(5) reduces to the correct prediction of QFM for a sharp crack. Thus, Eq. (5) represents the link between 
concentration and intensification factors. The result is simple but surprising: it predicts a finite (in contrast 
with LEFM) strength that is size-dependent (in contrast with the continuum tensional approach coupled 
with Elasticity) for geometrical self-similar defects in an infinite plate.  
 
An application for predicting the fracture strength of defective nanotubes  
A pioneer experimental work on strength and fracture of nanotubes is reported in [13]. The tensile 
strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a nanostressing 
stage composed by two opposing atomic force microscope (AFM) tips, Fig. 1a,b, and located within a 
scanning electron microscope (SEM). The tensile experiment was prepared and observed entirely within 
the microscope and was recorded on video until fracture. The sum of the fragment lengths, Fig. 1c, far 
exceeded the original nanotube length. This apparent discrepancy was explained by a sword-in-sheath 
type fracture mechanism, similar to that observed in carbon fibers, i.e., the MWCNTs broke in the 
outermost layer. The tensile and fracture strength of this layer ranged from 11 to 63 GPa for the set of 19 
MWCNTs that were loaded (in particular, values of 63, 43, 39, 37, 37, 35, 34, 28, 26, 24, 24, 21, 20, 20, 
19, 18, 18, 12, 11 GPa were measured). Analysis of the stress-strain curves for individual MWCNTs 
indicated that the Young’s modulus E of the outermost layer varied from 270 to 950 GPa. Transmission 
electron microscopic (TEM) examination of the broken nanotube fragments revealed a variety of 
structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse, Fig. 1d,e: a possible 
explanation was that when the outer layer of the MWCNT breaks at these large stresses, the accumulated 
elastic energy is released and generates a stress wave that travels through the outer surface of the 
MWCNT permanently deforming it. 
 

 
(a) (b) (c)  

 
(d) 

(e) 

 

Figure 1: Experiments [13] on fracture strength of nanotubes.  
 

The experimental results on nanotubes [13] show distinct clusters about a series of decreasing 
values of strength, with the maximum 63GPa, and the other values “quantized” at 43, 36-37, 25-26, 19-20 
and 11-12GPa. The measured strength of 63GPa is not in agreement with the ideal tensile strength of 
small diameter carbon nanotubes (CNTs), recently obtained with density functional theory (DFT, [14]). The 
tensile strength of an (8,8), thus armchair, CNT was calculated to be 114.6GPa; calculated tensile 
strengths of 107.5, 109.0, and 107.4GPa, respectively, were reported for 3 zig-zag CNTs: (8,0), (9,0), and 
(10,0). We note that the outer shell chiral angle was unknown for the 19 MWCNTs whose fracture strength 
was measured [13]. We speculate that the measured values are lower than the calculated ideal strength 
as a consequence of the presence of defects in the tested nanotubes. The observed strength quantization 



could be related to the quantization in the size of the defects. For example, assuming defects like adjacent 
vacancies ( a≈ρ2 , where we assume for the fracture quantum the distance between two adjacent 

broken chemical bonds, i.e., 03r≈
na

)

a , with , interatomic length, see Table 1), the crack 

length in Eq. (5) must be  with n integer number (non integer values of n thus represent forbidden 
bands for the strength related to the type of defect and structure considered); accordingly, the strength is 
predicted to follow a 

o

A42.10 ≈r
l =2

( 21−n1+  dependence. With 115 GPa for , the measured value of 63GPa is fit 
with n=3 and the next highest experimental value of 43GPa is fit with n=8, and so on. Note that these 19 
outer shells, of different dimensions, were composed of between 4 and 54 million atoms, thus also large 
defects are likely. It appears that none of the 19 MWCNTs had defect-free outer shells.  

Cσ

We now compare QFM with molecular mechanics (MM) and dynamics (MD) simulations. The 
simulations ([15]; MM, 0K) on a large diameter zig-zag (80,0) CNT, which has a diameter of 6.3nm, 
treated the reduction in strength due to missing pairs of carbon atoms. In the simulations, an n-atom 
defect was created by removing n adjacent atoms along the circumference of the nanotube; 2-, 4-, 6-, and 
8-atom defects were treated. The comparison between these MM simulations and Eq. (5) (we thus neglect 
here boundary effects) is summarized in Table 1; the MM-calculated strengths clearly follow the 
( ) 211 −+ n dependence predicted by QFM with a fit of 11121 =+ aC ρσ

o

A0.28.0 ≈≈ aρ

GPa. Molecular dynamics 
simulations confirms the same trend [16]. For the value of the ideal strength calculated in [15], 

, and thus it gives the reasonable value of . Note that in addition, this 
comparison represents an alternative (even if qualitatively similar) scenario for understanding the 
experimental evidence [13] (measured strengths of 63 and 43 GPa, and so on). 

GPa5.93=Cσ

 
Strength[GPa] n=2 n=4 n=6 n=8 

MM - (80,0) 64.1 50.3 42.1 36.9 
QFM  64.1 49.6 42.0 37.0    

 

Table 1: MM [15] and QFM comparison on fracture strength of nanotubes with n adjacent vacancies 
 (the graph reports the example of n=2, the applied load is vertical). 

 
Different kinds of defects, as holes, might be more stable than crack-like defects at the nanoscale 

[17, 18]. Nanotubes with “pinhole” defects, involving removal of 6 (defect m=1) or 24 (defect m=2) carbon 
atoms have been recently investigated in a (10, 10) nanotube by MD simulation [17]. We here investigate 
also larger values of m where the next larger hole is generated from the previous one by removing the 
“next perimeter” of carbon atoms (m=3, 56 atoms removed; m=4, 96 atoms removed; m=5, 150 atoms 
removed; m=6, 216 atoms removed, see Table 2). We estimate the radius of each hole as 

( 012 rmm −≈ )ρ . Since the ratio Dm πρ2 , with D nanotube diameter, is small (0.09 and 0.18 
respectively for the pinhole defects m=1 and m=2 analyzed in [17]), we treat the nanotube as an infinite 
graphene sheet (thus, by Eq. (5)). From the stress-intensity factor at the tip of a crack emanating from an 
hole [7] QFM (with 03ra ≈ ), yields the results reported in Table 2; the strength is reduced by a factor of 
1/3 (the classical value posed by Elasticity) only for very large (compared to a ) holes (the QFM 
asymptote is precisely 1/3.36). Even though there is reasonable agreement for the numerically computed 
strength reductions (0.80 for m=1 and 0.55 for m=2, [17]), in our opinion these numerical results, which 
include a calculated strength of a defect-free nanotube of ~300GPa, do not consider an important factor: 
the very large computed strength (as compared to DFT calculated values of ~110 GPa) suggests that 
there was a problem in the cut-off of the Brenner potential used (as discussed in [16]). In this context, ab-
initio and MD simulations have been recently performed [18] on nanotubes with m=1-6 holes. The results 
are compared with QFM in Table 2, with close agreement. Note in addition that in [18] strength reductions 
due to one vacancy by factors of 0.81 for (10,0) and 0.74 for (5,5) nanotubes are again close to our QFM-
based prediction, that yields 0.79.  

We finally note that assuming an ideal strength for the MWCNTs experimentally investigated [13] 
of 93.5GPa, as computed in [15], the corresponding strength for a pinhole m=1 defect is 64GPa (against 
the measured value of 63GPa), for an m=2 defect is 45GPa (against the measured value of 43 GPa) and 



for an m=3 defect is 39 GPa (as the measured value), and so on. This could represent another plausible 
scenario compared to the assumed linear defects that were discussed above. 

 

Cσσ  m=1 m=2 m=3 m=4 m=5 m=6 

QFM 0.68 0.48 0.42 0.39 0.37 0.36 
MD - (50,0)  0.64 0.51 0.44 0.40 0.37 0.34 

MD - (100,0)  0.65 0.53 0.47 0.43 0.41 0.39  
 

Table 2: MD [18] and QFM comparison on fracture strength of nanotubes with holes of size m 
(the graph reports the example of m=1). 

 
Conclusions 
A new energy-based theory of fracture mechanics involving a modification of the well known continuum-
based approach has been developed that properly accounts for the discrete nature of matter (or energy 
release). The proposed Quantized Fracture Mechanics (QFM) of Eqs. (2) is self-consistent, and can be 
easily applied analytically for predicting the strength also of nanostructures. The concept of forbidden 
bands and quantized strength level has been also introduced, and seems to be confirmed by the 
experimental evidence at nanoscale.  
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