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ABSTRACT 

The present paper presents a numerical method for the evaluation of the stress intensity factor in two 
dimensional heterogeneous materials under mechanical and thermal loads. The proposed method uses both 
FEM (Finite Element Method) and VCFEM (Voronoi Cell Finite Element Method), and has been developed 
using the MathematicaTM environment. The numerical models are obtained by combining the traditional finite 
elements, used to model the crack tip, and the Voronoi Cells, based on an hybrid formulation of the element, 
in order to represent the second phase. The use of this method in investigating the crack interaction in 
heterogeneous materials allows a simple mesh generation and a low computational cost, compared with 
traditional finite element method. In the present paper the proposed model has been verified by evaluating the 
stress intensity factors in an homogeneous material and by comparing them with those reported in literature; 
then the stress intensity factors for a heterogeneous material with periodic distribution of the second phase 
has been evaluated by introducing a variance in temperature. 
 

1  INTRODUCTION 
The use of heterogeneous materials to produce advanced structural components in mechanical, 
aerospace, automotive, shipbuilding and other branches of engineering, is constantly increasing. 
Furthermore the mechanical strength of brittle heterogeneous materials, like advanced ceramics, 
strongly depends on the presence of micro cracks dispersed in the materials, but their toughness 
can be increased by using reinforcement materials. The mechanical properties of these materials 
depend on the dimension, shape, distribution and properties of the second phase inclusion 
materials. The influence of a crack tip in heterogeneous materials has been investigated by means 
of continuum damage mechanics (Ortiz [1,2]), and semi analytical methods (Meguid [3], 
Gong[4]). The classical finite element method provides good results in evaluating the stress 
intensity factor, but unfortunately it requires a complex mesh in order to model micro-structural 
details of the heterogeneous materials. An alternative and less onerous numerical method consists 
in using the BEM (Boundary Element Method) and a special element for the analysis of the stress 
intensity factor (Luchi [5]), but it is too difficult to generate a mesh that takes into account the 
structural details of the heterogeneous materials. To overcome some of the limitations discussed 
above, the FEM can be integrated with an hybrid finite element method (VCFEM) in which the 
heterogeneity can be easily modelled by using n-sided polygonal elements with embedded 
inclusions, known as Voronoi Cell (Cesari [6-8], Ghosh [9], Zhang [10,11]). In this way a simple 
mixed mesh can be generated where the FEM is used to model the crack tip and the 
heterogeneities are modelled by using VCFEM. The aim of this paper consists in developing a 
numerical procedure which is able to analyze a two dimensional mesh containing both traditional 
and hybrid finite elements. By means of hybrid element formulation the heterogeneous materials 
with linearly elastic inclusions are analysed; the method is based on the principle of minimum 
complementary energy, while the stress distribution inside the element is interpolated by the full 
form of the Airy stress functions (Cesari [7], Ghosh [9]). In order to analyse two dimensional 
models under thermal loads a numerical procedure has been developed which is able to evaluate 
the equivalent thermal load vector in the hybrid elements. The reliability and accuracy of the 
proposed method have been initially verified by analysing hybrid models of two dimensional 



homogeneous materials and by comparing the stress intensity factors with those available in 
literature (Rooke [12], Brown [13]). Subsequently the effect of a variance in temperature on the 
stress intensity factor in an heterogeneous plate with a periodic distribution of the second phase 
has been evaluated. The material properties used in the simulation for the matrix and for the 
inclusions are those of alumina (Al2O3) and zirconia (ZrO2), which are typical oxides used to 
obtain advanced ceramic composites. 

 
2  NUMERICAL PROCEDURE 

In order to integrate the FEM e VCFEM methods some numerical procedures have been developed 
in MathematicaTM environment. The flow-chart in Fig. 1 show the sequence of the developed 
procedures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The FEM model is created by using a commercial finite element pre-processor, while the VCFEM 
model is generated by using the pre-processor Dirichlet (Cesari [14]), based on the Dirichlet 
tessellation method. Subsequently a solver evaluates the stiffness matrices [Ke]i and load the 
vectors {Re}i for each element. Then the two models are merged in a single one by eliminating the 
common nodes and by building the structure stiffness matrix [Ks] and the structure load vectors 
{Rs}. The mechanical loads are introduced in the structure load vector after the assembly of the 
two models while the thermal loads are introduced in the element load vectors. Finally, after 
constraining the structure and inverting the stiffness matrix, the displacement vector {D} is 
evaluated. 
 

3  VCFEM FORMULATION 
Figure 2 reports an example of hybrid element, used in the VCFEM method, with an embedded 
inclusion. The element formulation, as reported in (Cesari [7], Ghosh [9]), is based on the 
stationary complementary energy principle π=πm+πi: 
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Solver 
� [Ke]i Element 
� {Re}i Thermal loads

Assembly 
� [Ks] Structure 
� {Rs} Load vector 

Solution 
{D}=[Ks]c
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Figure 1: Flow chart of the numerical procedures. 

Constrains 
� [Ks]c Constrained structure 
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where the subscripts i and m indicate the inclusions and the matrix respectively; A and S represent 
respectively the area and the boundary of the matrix or of the inclusion; [C] is the elastic 
compliance matrix; {σ} is the stress field within the element and the inclusion; [n] contains the 
components of  the outward normal unit vector to the element boundary; {T} represents the 
prescribed boundary traction; {u} are the displacements along the outer and inner boundary of the 
element; {ε0} represents the thermal strain vector. 
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Figure 2: Hybrid element with an embedded inclusions. 

 
     The displacements {u} are interpolated by using the nodal displacements {q} and the boundary 
displacement interpolation functions [L] ({u}=[L]{q}), while the stress components within the 
element {σ} are assumed to be compatible with prescribed boundary tractions and satisfy the 
equilibrium conditions neglecting the body forces. The stress field {σ} is expressed as polynomial 
functions of coordinates x-y, by using complete forms of the stress Airy functions. This results in 
the product of an interpolation matrix [Pe] and an unknown vector of coefficients {β}, 
{σ}=[Pe]{β}. The stationary condition of the functional, with respect to the vector {β}, gives the 
expression of the stiffness matrix of the element: 

[ ]
[ ] [ ]
[ ] [ ]

11 12

12 22
e T

K K
K

K K

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦  

 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]( )[ ]mim

T
i

im
T

m

mm
T

m

GHHGK

GHGK

GHGK

11
22

1
12

1
11

−−

−

−

+=

−=

=

 
 

(3)

where [H] and [G] are defined as follows: 
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where [Re]=[n][Pe]. A detailed description of the formulation is reported in (Cesari [7]). 
In  the present paper a particular focus will be done on a procedure developed to evaluate the 
equivalent load vector to be used in the cases of thermal loads. 
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where superscript T indicates the thermal loads, and the thermal strain vectors {ε0} are expressed 
as follows: 
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where α is the thermal expansion coefficient of the material and  ∆T is the variance temperature. 
The resulting thermal load vector can be expressed as follows: 
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where {RmT} and {RiT} are given by the following equations: 
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4 NUMERICAL EXAMPLES 

 
4.1 Edge crack in an homogeneous plate 
 
The accuracy of the proposed method has been initially verified by analysing a two dimensional 
plate of homogeneous material containing an edge crack under uniaxial tensile stress. The analysis 
have been performed  for different values of the a/w ratio, where a and w represent the crack 
length and width of the plate respectively. In Fig. 3a) one of the model used in the simulation is 
reported. The upper part of the plate has been modelled by using 12 sixteen-noded and 4 twenty-
noded Voronoi cells of homogeneous materials, while the bottom consists of 92 four-noded 
conventional isoparametric elements and  a particular refinement was used to model the crack tip. 
The stress intensity factors have been evaluated by using the modified crack closure integral 
method as reported in (Rybicki [15]). The Fig. 3b) reports the KI values, normalized with respect 
to K0= aπσ , as function of the a/w ratio: the continuous line is the plot of an analytical 
expression reported in literature (Rooke [12], Brown [13]); the points represent the numerical 
results obtained by the proposed model. The graphics  clearly show  the good agreement between 
the results of the two methods, with difference  never greater than 1%. 
 

 
 
 
Figure 3: a) The numerical model; b) Comparison between the numerical results obtained by the 
proposed model (points) and those reported in literature (continuous line). 
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4.2 Edge crack in an heterogeneous plate 
 
In the present example a plate of heterogeneous materials with an edge crack has been analysed, in 
particular the KI values have been calculated under both mechanical and thermal loads. The 
material properties used in the simulation are those of zirconia, ZrO2, (E=205 GPa, ν=0.32) and 
alumina, Al2O3, (E=356 GPa, ν=0.32) for the matrix and inclusions respectively, while the volume 
fraction of alumina is fixed to 20%. The thermal expansion coefficients are function of the 
absolute temperature T and are given by the following expressions: 
 

21296 1044.1100.41075.9 TT −−− −+=α  for  ZrO2 
21396 109.8101.4106.6 TT −−− −+=α  for  Al2O3 

(9)
      

     The analysis have been performed by using the same models of the previous example, at 
different crack sizes (0.0625≤a/w≤0.625), and for two variance in temperature (100 K and 400 K). 
The results are reported in Fig. 4. In particular, Fig. 4a) shows the comparison between the 
homogeneous plate of the previous example and an heterogeneous plate (20% Al2O3 – 80% ZrO2); 
the decrease of KI is due to the higher Young’s modulus of the second phase heterogeneity 
(Al2O3). This effect is more evident when the crack tip is far from the centroid of the second 
phase, and this trend is amplified when the volume fraction of the heterogeneities increases (see 
Cesari [8]). Figure 4b) reports the effects of the temperature on the KI for the heterogeneous plate 
(20% Al2O3 – 80% ZrO2); as it is shown in figure, KI increases as the variance in temperature 
increases because the lower thermal expansion coefficient of the second phase induces a residual 
tensile stress in the matrix and in particular around the inclusions. This effect is more evident 
when the crack tip is located in front of the centroid of the second phase. 
 

 
Figure 4: a) Comparison of KI/K0 between homogeneous and heterogeneous plate (20% Al2O3 – 
80% ZrO2); b) KI/K0 for heterogeneous plate (20% Al2O3 – 80% ZrO2) at different temperature. 
 

5  CONCLUSIONS 
A mixed FEM-VCFEM method, which is capable of analysing elastic crack in two dimensional 
heterogeneous materials under thermo-mechanical loads, has been developed. The use of VCFEM 
allow the simple modelling of the heterogeneities, while the FEM is used to model the crack tip. 
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a/w a/w 



The accuracy and versatility of the proposed method have been illustrated by executing some 
numerical examples. The results obtained in this way are in good agreement with the 
corresponding theoretical results. As illustrated in the numerical examples an interesting 
application of the proposed method could be the analysis of the toughness of advanced ceramics 
materials under thermo-mechanical loads, and other models can be generated in order to analyse 
interface matrix-inclusion cracks. 
 

6 REFERENCES 
[1] Ortiz, M, Continuum Theory of Crack Shielding in Ceramics, J. Applied Mechanics, 54, 54-

58, 1987 
[2] Ortiz, M, Giannakopoulos, AE, Maximal Crack Tip Shielding by Microcracking, J. Appl. 

Mech., 56, 279-283, 1989 
[3] Meguid, SA, Mechanics and Mechanism of Thoughening of Advanced Ceramics, J. Mater. 

Process. Technol., 56, 978-989, 1996 
[4] Gong, SX, On the Formation of Near Tip Microcracking and Associated Thoughening 

Effects, Eng. Fract. Mech., 50, 29-39, 1995 
[5] Luchi, ML, Rizzuti, S, Boundary Elements for 3-Dimensional Elastic Crack Analysis, Int. J. 

Numerical Methods In Engineering, 24 (12), 2253-2271, 1987 
[6] Cesari, F, Furgiuele, FM, Maletta, C, L’elemento Finito Ibrido Applicato a Materiali 

Contenenti Vuoti o Inclusioni Rigide, XXXII AIAS, Salerno (Italy), 2003 
[7] Cesari, F, Furgiuele, FM, Martini, D, Analisi di Strutture Piane in Materiale Eterogeneo con 

l’Elemento Finito Ibrido, XXX AIAS, Alghero (Italy), 1093-1101, 2001 
[8] Cesari, F, Furgiuele, FM, Maletta, C, Stress Intensity Factors in Heterogeneous Materials 

with Hybrid Finite Element Method, 3rd Int. Conference on Computational Modeling and 
Simulation of Materials, Acireale-CT (Italy), 2004. 

[9] Ghosh, S, Mukhopadhyay, SN, A Material Based Finite Element Analysis of Heterogeneous 
Media Involving Dirichlet Tassellations, Comp. Methods in Appl. Mech. and Eng., 104, 211-
247, 1993 

[10] Zhang, J, Katsube, N, A Polygonal Element Approach to Random Hetorogeneus Media with 
Rigid Ellipses or Elliptical Voids, Computer Methods in Applied Mechanics and 
Engineering, 148, 225-235, 1997 

[11] Zhang, J, Zeng, D, Katsube, N, Soboyejo, W, Hybrid Crack-Tip Element and its 
Applications, Finite Element in Analysis and Design, 38, 319-335, 2002 

[12] Rooke, DP, Cartwright, DJ, Stress Intensity Factor, Hillingdon Press, London, 1976 
[13] Brown, WF, Srawley, JE, STP 410, ASTM, 1966 
[14] Cesari, F, Furgiuele, FM, Martini, D, An Automatic Mesh Generator for Random 

Composites, Proceedings of the 12th International Conference on Design Tools and Methods 
in Industrial Design, Rimini (Italy), 2001 

[15] Rybicki, EF, Kanninen, MF, A Finite Element Calculation of Stress Intensity Factors by a 
Modified Crack Closure Integral, Eng. Fracture Mech., 9, 931-938, 1977 


