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ABSTRACT
The “plasticity-induced crack closure” phenomenon is the leading mechanism which controls the main effects
on fatigue crack growth (e.g. stress ratio and load interaction effects) in metallic materials. Experimental tests
are usually carried out to quantify the physical phenomenon, but some aspects concerning the elaboration of
acquired signals are not yet clear. From the analytical point of view, the so-called Strip Yield model has
proven to be the most versatile and powerful tool for estimating crack closure levels, but its application to
steels is not yet straightforward. The present work tries to add some new ideas on the elaboration of local
compliance experimental data in crack closure analysis simulating experimental P-εoffset loops by means of an
optimised Strip Yield model implementation enriched by a novel and recently presented module based on the
Westergaard’s elastic complex potentials. Analytical results gave the possibility to investigate some of the
different parameters which influence local compliance measurements.

1  INTRODUCTION
Plasticity-induced crack closure (CC), originally introduced by Elber (Elber [1]), is the leading
mechanism to explain the influence of different factors acting on fatigue crack growth in metallic
materials, such as stress ratio (R) effects and load interaction phenomena typically occurring under
variable amplitude loading.

Experimental evaluation of CC mainly consists in the determination of the opening load (“Pop”
or “Sop” respectively in terms of load or stress) of crack surfaces during a single load cycle. Two
kind of methods are proposed in literature to achieve this goal: “global methods” (ASTM E647
[2]), based on the analysis of the global compliance of the specimen, and “local methods”
(Toyosada et al. [3]), based on local compliance measurements near the crack tip. Particularly (Fig.
1), the latter consists firstly in the acquisition of a P-ε loop that eventually is transformed in a P-
εoffset loop by means of a regression line drawn onto the upper linear part of the unloading branch,
where the crack is supposed to be completely open. Then, Pop value corresponds to the point on the
loading branch that presents the same slope of the points just under the maximum load on the
unloading branch. The typical problems that arise during the elaboration and analysis of acquired
signals are: i) smoothing the (always present) noise; ii) the definition of the portion of the
unloading branch on which define the regression line useful to transform the P-ε loop in the P-εoffset
loop. The first problem has already been faced in a previous work (Skorupa et al. [4]), while some
considerations on the second topic are presented in this paper.

Among many existing analytical models to account for CC effects, the so called Strip Yield (SY)
model, first developed by Newman (Newman [5]), is the most flexible and powerful tool since it
allows to compute crack opening levels under arbitrary load histories (Skorupa [6]). The key point in
SY models is the evaluation of the amount of constraint on yielding at the crack tip, quantified by the
so called “constraint factor” (α). Estimation of the constraint factor is usually done on the basis of
crack growth tests carried out at different R-ratios during which CC levels are measured: the correct α
value is the one matching the SY model predictions with the experimental data on CC and crack
growth. Recent results by the Author (Beretta et al. [7]) show that, in order to correctly evaluate CC in



structural steels, local compliance measurements should be performed. Furthermore, a novel module
(Beretta and Carboni [8]) based on Westergaard’s elastic complex potentials (Westergaard [9]) has
been added to the SY model in order to determine displacements of any given point in the region of
crack tip. An optimised SY model implementation (Beretta et al. [10]) together with this new
module will be so adopted in the present paper in order to simulate the previously determined
experimental P-εoffset loops and to investigate some of the different parameters which influence
local compliance measurements.
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Figure 1: Elaboration of local compliance P-ε loops in P-εoffset loops.

2  EXPERIMENTAL PROCEDURE
Local compliance measurements have been carried out, during propagation tests, on M(T)
specimens (width 80 mm, thickness 9 mm and notch length 12 mm) made in a S275J2G3 (PN-EN
10025) mild structural steel characterised by σy,monotonic=320 MPa, σy,cyclic=240 MPa and σu=475
MPa (Carboni [11]). Tests were carried out at constant amplitude and at stress ratio equal to –1,
0.1, 0.3, 0.5 and 0.7. Fig. 2 shows the typical gluing of uni-axial strain gages across the expected
crack path. More details associated with CC measurements and experimental Pop estimation are
provided elsewhere (Beretta et al. [7]).
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Figure 2: Local strain gages glued along the expected crack path.

3  ANALYTICAL MODEL
SY models have been defined and are used to simulate and predict crack propagation in structural
components keeping the influence of CC. Particularly, the dimension of the plastic zone is
determined applying the Dugdale’s theory (Dugdale [12]). Then the plastic zone is discretised in
elements that break during propagation and that, remaining plastically deformed, originate the
plastic wake. The entity of the stress internal to a given element can be achieved by equilibrium



and compatibility equations of the whole system and is a function of the remote applied load, of
the geometry and of the material. The opening load is then computed resolving the SIF equilibrium
of the system at the crack tip.

The drawback of this approach, a said before, is that 2D SY model results are strongly
influenced by the constraint factor α. Particularly, the yield stress for the elements is supposed to
be α⋅σy, where α can vary between 1 (pure plane stress) and 3 (pure plain strain). There is not a
definite rule for finding the correct α value: it should be chosen as the one which predict Pop
estimates close to experimental results. From this point of view, it’s important to add that different
constraint concepts have been proposed in literature: the original Newman’s model considers only
one constraint (here called αt, relative to tensile yielding in the plastic zone), while three different
constraint factors (αt, αc for compressive yielding in the plastic zone and αw for compressive
yielding in the plastic wake) have been considered in the present SY model. Particularly, the
simple constraint concept adopted here chooses αc=αt and αw≈1/αt, where αt can be defined from
expressions available in literature (Guo et al. [13]). This constraint concept has proven to be
effective for steady state conditions, but not for variable amplitude loads: in this case other
formulations seem to produce better results (NASA [14], Skorupa et al. [15]).

Westergaard’s elastic complex potentials Z are particular solutions for the Airy’s stress
function. Since the SY model can provide information only for points constituting crack surfaces
and the plastic zone, the complex potentials permit to derive all the stress components and the
entity of the displacements for any given (x,y) point in the crack region. Different Z solutions are
available in literature depending on crack geometry.

The analytical tool, adopted in the present paper, discretises the load cycle in steps and for each
of them it calculates, by the SY model, the entity of contact stresses (σa and σρ) between crack
surfaces (Fig. 3).
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Figure 3: Simulation of P-ε loops ahead of the crack tip.

These stresses are then introduced in the complex potentials expressions, together with the
remote applied stress:

( ) ( )( ) = + +
i a i ii P P PZ P Z Z Z

ρσ σ . (1)

Eventually, the instantaneous vertical displacement vi (i.e. in the direction of adopted uni-axial
strain gages) for any given point (x, y) of the region of the crack tip can be derived (McKellar et
al. [16]):
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where Z* is the integration of Z on the complex variable z=x+iy, E and ν are the Young and
Poisson moduli, “Im” and “Re” are the imaginary and real part of a complex number and y is the
vertical co-ordinate of the chosen point of analysis. Finally, repeating the procedure for all the Pi

values, the correspondent strains are calculated so that a complete theoretical P-ε loop is
determined (Beretta et al. [7]).

3.1 Application of the analytical model to constraint factors calibration

An important application of the analytical tool is the possibility to calibrate the constraint factors
by comparison with experimental P-εoffset loops. Fig. 4 shows, as an example, the comparison for
a=13.7 mm, R=0.1 and Smax=64 MPa, in a point positioned 0.4 mm away from the crack tip
(x=14.1 mm and strain gage base 2 mm). The analytical results coming from both the original
Newman’s constraint concept (αt=2.5 and αc=αw=1) and the symmetrical constraint concept here
adopted (αt=αc=2.05 and αw=0.45) are reported.
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Figure 4: An example of simulation of P-εoffset loops (a=13.7 mm, R=0.1, Smax=64 MPa, x=14.1
mm and strain gage base 2 mm).

As it can be seen, even if the Pop values produced by the analytical concepts correspond to the
experimental one, the loop shape seems much better in the case of the symmetrical concept. This is
due to the fact that there are infinite α triplets that produce the right opening load value, but just a
little amount of them can contemporaneously give a good match of the loop shape. Moreover, it is
intuitive that a good match of loop shapes automatically satisfies the Pop requests, with the
advantage that, in this way, constraint factor calibration is based on a physical foundation.

4  ANALYSIS OF LOCAL COMPLIANCE MEASUREMENTS
The analytical tool permitted firstly to investigate the influence of the distance between crack tip
and strain gage. Fig. 5 shows the variation of analytical loop shapes for the cases of R=0.1 and
R=0.5. As it can be seen and as expected considering “local” compliance acquisitions, the
sensitivity of the method (i.e. the hysteresis on which relies Pop estimation) gets lower and lower
increasing the distance of the strain gage. This fact suggests that a criterion for applicability should
be further investigated. Particularly, the lower bound can be fixed in terms of plastic zone
dimension, inside which large deformation prevents reliable measurements with strain gages. The
maximum distance corresponds to a significant width of the hysteresis loops: as a first instance



from Fig. 5 data, it appears that a “wide” hysteresis loop is achieved till a distance equal to 10·rp,
where rp is the dimension of the process zone computed by the SY model. A more systematic
study of this parameter is yet being carried out.
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Figure 5: Influence of the distance between crack tip and strain gage: a) case of R=0.1; b) case of

R=0.5. (dashed area corresponds to the “process zone” computed by the SY model)

A second aspect to consider is that to univocally calibrate the constraint factors from local
measurements, it’s necessary to know (estimate) a priori the entity of the linear part (∆Plinear) of
the experimental unloading branch. As an example, Fig 6a shows the effect, in terms of the portion
(10%, 20% and 30%) of the unloading branch on which the regression line used for the offset
transformation is defined, on the experimental loop already shown in Fig. 4. Even if the Pop value
is the same for all the considered cases, the loop shape is significantly different: this means that
constraint factors results should be different, too.
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Figure 6: Effect of different definitions of regression line on P-εoffset loops transformation: a) case

of a=13.7 mm, R=0.1, Smax=64 MPa, x=14.1 mm and strain gage base 2 mm; b) results
obtained in terms of ∆Plinear as a function R, α and Smax.



In order to define a rule for offset transformation, the analytical procedure has been applied to
determine ∆Plinear as a function of α and maximum applied stress for different R values.
Particularly, since for the considered material it was observed (Carboni [11]) that typical calibrated
values of αt are between 1.5 and 2.5, values of this parameter equal to 1.5, 2 and 2.5 were
considered together the symmetrical constraint concept. Results are shown in Fig. 6b: it has been
found that in order to apply an offset transformation always valid in respect to different R and Smax

conditions, it’s necessary to set a ∆Plinear included between 8% and 15% of the ∆Ptotal.

5  CONCLUDING REMARKS
Elaboration of experimental local compliance measurements of crack closure has been addressed.
Particularly, a previously proposed analytical tool, formed by an optimised Strip Yield model
together with a module implementing the Westergaard’s elastic complex potentials and able to
simulate experimental P-εoffset loops, has permitted to investigate some of the different parameters
which influence local compliance measurements.
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