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Abstract

The fractal approach to the mechanics of materials with disordered microstructure allows an elegant and
unified explanation of the size effects the cohesive crack model parameters are subjected to. The aim of this work
is to show why fractal patterns in the failure process of concrete specimens under tensile loads can be seen as a
consequence of the grain size distribution of the aggregates. Finally, a fractal cohesive model will be outlined and
applied to the most relevant test data.

1 Introduction

One of the most important topics in solid mechanics is the study of the so-called size effect, whose importance
has been widely recognized during the last decades. With size effect we mean the dependence of one or more
material parameters on the size of the structure made by that material. Particularly, in concrete-like materials
tensile strength decreases with size, whereas fracture energy increases.

Such variations are mainly due to the localization of the damage in the failure process of the structures com-
posed by quasi-brittle materials. Nowadays, the most used model to describe damage localization in materials
with disordered microstructure (also called quasi-brittle or concrete-like materials) is the cohesive crack model,
introduced by Hillerborg et al. [1]. According to Hillerborg’s model, the material is characterized by a stress-strain
relationship (�-"), valid for the undamaged zones, and by a stress-crack opening displacement relationship (�- w,
the cohesive law), describing how the stress decreases from its maximum value �u to zero as the distance between
the crack lips increases from zero to the critical displacement wc. The area below the cohesive law represents
the energy GF spent to create the unit crack surface. The cohesive crack model is able to simulate tests where
high stress gradients are present, e.g. tests on pre-notched specimens. On the other hand, relevant scale effects are
encountered also in uniaxial tensile tests on dog-bone shaped specimens [2, 3], where smaller stress gradients are
present. In the latter case, size effects can not be predicted by the cohesive crack model.

In order to overcome the original cohesive crack model drawbacks, a scale-independent (or fractal) cohesive
crack model has been proposed recently [4]. This model is based on the assumption of a fractal-like damage
localization. The fractal nature of the damage process allows a consistent explanation of the size effects on the
cohesive crack model parameters. As a matter of fact, if the damage zone is fractal both the geometrical quantities
(i.e. the area of the resistant cross-section, the area of the final crack surface and the thickness of the damage band)
and the physical quantities (i.e. the tensile strength, the fracture energy and the critical displacement) become
nominal quantities and are, therefore, size-dependent. On the other hand, fractal quantities should be used: they
are the true scale-invariant material parameters. The fractal strength and fractal fracture energy were introduced
by Carpinteri in 1994 [5], while the fractal critical strain has been introduced recently [4, 6].

The hypothesis of a fractal damage domain received different experimental confirmations [7, 8]. The aim of
the present paper is to provide a theoretical explanation of the fractality of the concrete damage domains based on
the aggregate size distribution. As is well-known, the weakest link in normal strength concrete is represented by
the interface between the cementitious matrix and the aggregates. Therefore it seems reasonable to look for a link
between the aggregate grading and the fractal features (e.g. the fractal dimension) of the damage domain. Attention
will be focused onto the computation of the fractal dimensions of (i) the region where energy is dissipated during
the failure process and (ii) the region where stress is transferred at the peak load.
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The main tool we will use to perform the fractal analysis is Stereology, which encompasses the geometrical
probability aspects of the problem. For what concerns the stereology applied to concrete, we refer to the work by
Stroeven [9–11], while useful fractal concepts can be found in the book by Turcotte [12], whose fragmentation
analysis is analogous to the stereological approach we are going to develop.

It is found that the surface of the aggregates inside the damage band where the main crack will grow in the last
stage of the tensile failure can be modelled by an invasive fractal set of dimension larger than 2. Furthermore, we
obtain the probability density function of the diameters of the circles interception of the grains with a plane parallel
to the damage band; this function shows that the resistant cross-section can be modelled by a lacunar fractal set
with dimension lower than 2. Therefore lacunar and invasive fractalities are proven and consequent size effects on
tensile strength and fracture energy may be pointed out.

2 The aggregate sieve curve and the related grain size distribution func-
tion

The basis for the dimensional characterization of the concrete aggregates is the sieve analysis. The sieve curve
describes the weight percentage W (d) of the aggregates passing through a sieve with d-wide mesh. Thanks to
its good packing property, the most common sieve curve used to prepare concrete is the so-called Füller curve:
W (d) =

p
d=dmax. Henceforth we will refer in the following to the Füller aggregate size distribution. Fur-

thermore, we will assume the aggregates to be spheres of diameter d comprised between a maximum value,
dmax = 20 mm, and a minimum one, dmin = 0:2 mm (hence dmin=dmax = 1=100). In large buildings, the
largest size is usually proportional to the size of the structure: in dams, for instance, dmax can be set equal to 120
mm.

It can be easily shown [10] that the Füller sieve curve can be expressed in terms of grain size distribution
function as follows:

f(d) = 2:5
d
2:5
min

d3:5
(1)

where f(d) is a probability density function (PDF), i.e. f(d) dd is the fraction of grains with diameter belonging

to the interval [d; d + dd] and
R
dmax

dmin

f(d) dd = 1. Eq. (1) shows clearly that the number of the small particles

is higher than that of the large ones, since the former must fill the gaps between the latter. We will mark by dV,
d
2
V, d3V the first three moments of the PDF (1). The first moment represents the average diameter in the concrete

volume, while the second and third are proportional to the average grain surface and volume, respectively.

plane α

b

Figure 1: A concrete specimen: grain distribution in the bulk and on a plane �.

In order to study the weakening effect of the aggregates in the stress transfer mechanism inside concrete, the
size distribution of the particles on a cutting plane is requested. To fix the ideas, let us refer to a concrete cube of
side b cut by a plane � as shown in Fig. 1, where, for the sake of clarity, only a few particles have been drawn. We
denote by NV and NP respectively the number of grains inside the volume and the number of grains intercepted
by the plane �. Denoting by g(d) the PDF of the grain diameters intercepted by the plane �, it is possible to prove
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Figure 2: Concrete specimen tensile test: intergranular crack (a) and damage band (b).

the following relationships:

NP =

Z
dmax

dmin

d

b
NV f(d) dd =

NV

b
dV (2)

g(d) =
d

dV

f(d) (3)

Interestingly, the first moment of Eq. 3 (i.e. the average diameter dP of the particles intercepting the plane �) is
higher than the average diameter in the bulk dV. In the literature this phenomenon is called coarsening.

Eventually, wishing to find the relationship between the concrete volume and the number of grains inside it, we
need one more parameter, i.e. the volume percentage fa of the aggregates. This percentage must be rather high,
since the aim is a good particle packing but also a sufficient fluidity of the mixture when the concrete is cast. In
normal strength concrete the aggregates occupy about three fourth of the total volume; i. e. fa ' 0:75. The total
number of particles inside the cube of side b is, therefore:

NV =
fab

3

�

6
d3V

(4)

This means that, when the above data are considered, the particles inside 1 m3 of concrete are about 4 billions!

3 Fractal analysis of the aggregate-matrix interface

As will be shown in Section 5, according to the fractal approach, the size effect on the fracture energy can be
explained only if the domain where energy is dissipated is fractal. If it is not, no size effect should be expected.

We will make two diffent hypotheses about the region where dissipation takes place and we will perform a
fratal analysis of this region. With fractal analysis we mean essentially the computation of the fractal dimension
of a given set. The easiest way to do it is possibly to measure the area of the set at different resolution levels and
to study how the measure varies increasing the resolution. If it diverges, the set is an invasive fractal (i.e. with
a dimension larger than 2); if it tends to zero, it is a lacunar fractal (i.e. with a dimension lower than 2); if it
converges to a finite value different from zero, it is simply an Euclidean surface. The exponent of the power law
describing the graph of the measure versus the resolution represents the difference from 2 of the fractal dimension
of the given set. For the sake of simplicity, the resolution level will be identified by the grain diameter itself, even
if, formally, the resolution should be the inverse of the diameter. For instance, a resolution of level d means to be
able to capture the contribution of particles whose diameter is larger than or equal to d.

Now, let us consider the simple scheme of a uniaxial tensile test of the normal strength concrete specimen
drawn in Fig. 2. As experimentally detected, we assume the crack to be intergranular (Fig. 2b); i.e. no grain
breaks. The grains remain bonded to the side of the specimen containing their larger side. We further assume the
portion of the crack that lies in the cementitious matrix to be flat.
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About the energy dissipation region, we will make two different hypotheses: the former assumes this region
to be the crack surface (Fig. 2b), the latter assumes as dissipation zone the surface of all the grains included in a
damage band of thickness a (Fig. 2a).

For what concerns the former hypothesis, we see from Fig. 2b that the crack surface is composed by the surface
of the cementitious matrix plus the surface of the grains. The area occupied by the matrix is simply equal to the
fraction 1�fa of the cross-section, while, increasing the measure resolution, more and more grains can be detected:
hence the measure of the crack surface increases with the resolution. An upper bound for the portion of the crack
area occupied by the grains is the sum S of the areas of the surfaces of all the grains cut by the plane of the crack,
whose distribution is given by Eq. (3). S is a function of the resolution d according to:

S(d) =

Z
dmax

d

NPg(d)�d
2 dd =

5�NPd
2:5
min

d
0:5
max

dV

 
1�

r
d

dmax

!
(5)

As d tends to zero (infinite resolution),S(d) converges to a finite value (see Fig.3). As stated above, this means that
the crack surface is not a fractal set: it is simply a rough surface. Therefore, no size effect over the fracture energy
should appear. Since this is not the case, we reject the former hypothesis and consider the latter one, according to
which energy is dissipated over the interface between the matrix and the grains included in a a-wide damage band
(Fig. 2a). In this case the area Adis(d) of all the interfaces is:

Adis(d) =

Z
dmax

d

a

b
NV�d

2
f(d) dd = 5�

a

b
NVd

2
min

"r
dmin

d
�

r
dmin

dmax

#
(6)

As the resolution increases (d tends to zero), Adis(d) diverges. This means that, in a certain range of scales, the set
represented by the interfaces shows a fractal behaviour. Further, as shown in Fig. 3 where S and Adis vs. measure
resolution are plotted in a bilogarithmic, dimensionless diagram (assuming a equal to 3dmax), Eq. (6) is very well
approximated, for not too low resolutions, according to a power law with the exponent equal to �0:5: this fact
allows us to state that the aggregate surface inside the damage band can be modeled by an invasive fractal set of
dimension 2:5. The model is therefore able to predict the size effect on fracture energy in tensile tests, as will be
pointed out in Section 5.

Finally, let us consider that, even if less intuitive in comparison with the former hypothesis about energy
dissipation, there are experiments that lead to believe the latter hypothesis to be more realistic than the former
one. For instance, acoustic emission analyses during tensile test performed by Shah over concrete specimens [13]
showed that several damage phenomena take place inside the bulk all along the failure process. While at an early
stage of loading they are spread all over the volume, near and after the peak load damage phenomena concentrate
in a narrow band where, at the ultimate stage of the softening regime, the main crack appears. For these reasons,
Bazant and Oh [14] developed their crack band model. Our model is however more complex, since we consider
the damage to be fractal-like inside the damage band.
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Figure 3: Bilogarithmic and dimensionless plot of the area S of the grains belonging to the fracture surface (gray
line) and of the area Adis of the aggregate-matrix interface inside the damage band (black line) vs. measure reso-
lution.
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Figure 4: Cross-section of a concrete specimen: 2D distribution of the grain circles intercepted by the section plane
(a) and detail of a particle (b).

4 Fractal analysis of the cementitious matrix cross-section

Now we turn our attention to the stress transfer inside the damage band of the concrete specimen subjected to
a tensile load (Fig. 2a). As stated in the previous section, we assume that inside the damage zone, microcracks
develop all around the aggregate near by the peak load. Therefore, the size distribution of the two-dimensional
circles interception of the grains with the plane of the section (Fig. 4a) could be considered as representing the
spatial size distribution of the initial bond cracks that have weakened the cross-section in an early stage of loading
[9].

Denoting by � the diameter of the circle intercepted by the section plane cutting a grain of diameter d (see
Fig. 4b), the following relation holds:

y =

p
d2 � �2

2
(7)

where y is the distance of the center of the spherical grain to the plane of the cross-section. Based on the PDF
g(d) of the diameters d of the particles intercepted by a plane – see Eq. (3) – we intend to obtain the PDF r(�) of
the diameters � of the circles belonging to the cross-section. The total number of circles belonging to the section
is obviously NP (Eq. (2)). The number of circles with diameter comprised between � and � + d� is given by the
sum of the compound events to find a particle with diameter d � � whose center shows a distance from the section
plane comprised between y and y + dy. Since we deal with continuous distributions, the sum, in mathematical
terms, is an integral between � and dmax, if � � dmin, and between dmin and dmax, if � < dmin. On the other
hand, the probability that the center of a sphere lies at a distance y from the section plane is 2dy=d (0 � y � d=2).
Therefore the number of circles with diameter comprised between � and �+ d� is:

NPr(�)d� =

Z
dmax

dmin ;�

NPg(d)
2dy

d
dd (8)

The link between y and � is given by Eq. (7). Eq. (3) as well as the differentiation of Eq. (7) lead to the following
result for the PDF r(�):

r(�) =

8>>>>><
>>>>>:

�

dV

Z
dmax

dmin

f(d)p
d2 � �2

dd; if 0 � � < dmin

�

dV

Z
dmax

�

f(d)p
d2 � �2

dd; if dmin � � � dmax

(9)

In the case of the Füller sieve curve, f(d) is given by Eq. (1) and no analytical solutions can be found for the
function r(�). However, an accurate numerical integration can be performed by means of the Gauss-Chebyshev
quadrature formula. The result is plotted in Fig. 5a. Note that function r(�) is continuous over the whole domain
of existence, even if it has a singularity for � = dmin.

We are now able to compute the area Ares occupied by the cementitious matrix on a generic cross-section
varying the measure resolution. As stated above, this area represents the true resistant cross-section at the peak
load, since the bond cracks fully develop around the grains inside the damage band.
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The area of the matrix (the black side of Fig. 4a) can be found by subtracting from the nominal area b2 of the
cross-section the area occupied by the grains. Increasing the measure resolution (i.e. decreasing �), more and more
grains can be detected and subtracted from the nominal area. That is:

Ares(�) = b
2 �

Z
dmax

�

NPr(�)
��

2

4
d� (10)

Upon substitution of Eqs. (2) and (4) and dividing by b 2, we get:

Ares(�)

b2
= 1�

3fadV

2d3V

Z
dmax

�

r(�)�2 d� (11)

Using a numerical evaluation of r(�), the dimensionless matrix area (11) can be plotted in Fig. 5b. In the same
figure we plotted also the graph of the area of a deterministic fractal set of dimension 1:67, which is exactly a
power law. The two curves are very close. We can therefore conclude that the resistant cross-section inside the
damage band can be realistically modeled by a lacunar fractal set of dimension 1:67. Hence the model is able to
predict the size effect on the tensile strength, as will be pointed out in Section 5.
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Figure 5: Probability density function of the diameters of the grain circles intercepted by the plane of the cross-
section (a). Dimensionless area of the resistant cross-section (black line) and of a deterministic lacunar fractal set
(gray line) vs. measure resolution (b).

Finally, let us consider that the fractal dimension of the resistant cross-section given by the analysis of Eq. (11)
depends on the volume fraction occupied by the aggregates, fa. More in detail, for very high values of the volume
fraction (fa ' 0:9) the fractal dimension tends to the value 1:5, while for low values of fa it tends to 2, i.e. the
dimension of an Euclidean surface. In other words, the aggregate are the cause of disorder inside the concrete
microstructure. Eliminating the aggregates, both the fractal features and the related power laws describing the size
effects of mechanical properties disappear (see next section).

5 Size-independent cohesive crack model

In the present section, the geometrical results of the fractal analysis of damage domains performed in the previous
sections will be exploited to explain the size effects upon the mechanical quantities characterizing the cohesive law
observed during experiments [2, 3, 5]. Besides, a fractal cohesive model independent of the structural size will be
proposed.

First of all, let us consider the work W necessary to break a concrete specimen (Fig. 2) of cross section b2. It
is equal to the product of the fracture energy GF times the nominal fracture area A0 = b

2. On the other hand, we
assumed that the surface where energy is dissipated is not the flat cross-section: it is the surface of the aggregates
inside the damage band (Fig. 6c), whose area Adis diverges as the measure resolution tends to infinity – see
Eq. (6). Therefore the fracture energy should be zero, which is meaningless. Finite values of the measure of the
set where energy is dissipated can be achieved only via the fractal (Hausdorff) measure [15] of the considered set,
A
�

dis
� b

2:5, to which the fractal fracture energy G�
F

corresponds [5]:

W = GFA0 = G�
F
A
�

dis

GF � G�
F
b
0:5 (12)
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G�
F

is the true scale invariant material parameter, whereas the nominal value GF is subjected to a scale effect
described by a positive power law.

A similar argument holds for the tensile strength. The maximum tensile load F is equal to the product of
the strength �u times the nominal area A0 = b

2. On the other hand, we showed that the surface of the resistant
cross-section is not the whole section: it is the portion of the surface occupied by the cementitious matrix (Fig. 6a),
whose area Ares tends to zero as the measure resolution tends to infinite – see Eq. (11). Therefore, the strength
should be infinite, which is meaningless. Finite values of the measure of the set where stress is transferred can
be achieved only via the fractal (Hausdorff) measure [15] of the considered set, A�

res
� b

1:5, to which the fractal
strength ��

u
corresponds [5]:

F = �uA0 = �
�

u
A
�

res

�u � �
�

u
b
�0:5 (13)

�
�

u
is the true scale invariant material parameter, whereas the nominal value �u is subjected to a scale effect

described by a negative power law. The absolute value 0:5 for the exponents of the power laws (12) and (13) is an
upper bound, since they were derived according to the hypothesis that all the bond interfaces fail inside the damage
band. More generally, therefore, the two power laws should be re-written as:

GF � G
�

F
b
+dG (14)

�u � �
�

u
b
�d� (15)

where (2 + dG) and (2 � d�) are respectively the invasive and lacunar fractal dimensions of the domains where
energy is dissipated and stress is tranferred. The two scaling exponents dG and d� depend on the material and
the kind of test. On the other hand, as we have shown, they are always positive and comprised between 0 and
1=2. Finally, notice that the fractal fracture energy G�

F
and the fractal tensile strength ��

u
show anomalous physical

dimensions: respectively [FL][L]�(2+dG) and [F ][L]�(2�d�).

(c)
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Figure 6: Fractal localization of stress (a), strain (b), energy dissipation (c).

Now we turn our attention to the deformation inside the damage zone. We assume that the strain field presents
fractal patterns. This could appear strange at a first glance; on the contrary, fractal strain distributions are rather
common in material science. For instance, in some metals, the so-called slip-lines develop with typical fractal
patterns. Also fractal crack networks develop in dry clay or in old paintings under tensile stresses due to shrinkage.
Thus, as representative of the damaged band, consider now the simplest structure, a bar subjected to tension
(Fig. 6b), where, at the maximum load, dilation strain tends to concentrate into different softening regions, while
the rest of the body undergoes elastic unloading.

Assume, for instance, that the strain is localized at cross-sections whose projections onto the longitudinal axis
are provided by the triadic Cantor set, whose dimension is ln 2= ln 3 = 0:6391; the displacement function at rupture
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can be represented by a Cantor staircase graph, sometimes also called devil’s staircase (Fig. 6b). The strain defined
in the classical manner is meaningless in the singular points, as it diverges. This drawback can be overcome by
introducing a fractal strain. Let us indicate with 1 � d" (d" � 0) the fractal dimension of the lacunar projection
of the damaged sections (in this case 0:6391). According to the fractal measure of the damage line projection, the
total elongationwc of the band at rupture must be given by the product of the Hausdorff measure b� � b

(1�d") of
the Cantor set times the critical fractal strain "�

c
, while in the classical continuum theory it equals the product of

the length b times the critical strain "c:

wc = "cb � "
�

c
b
(1�d")

"c � "
�

c
b
�d" (16)

where "�
c

has the anomalous physical dimension [L]d" . The fractal critical strain is the true material constant, i.e. it
is the only scale-invariant parameter governing the kinematics of the fractal band. On the other hand, Eq. (16)
states that the scaling of the critical displacement is described by a power law with positive exponent (1 � d ").
The fractional exponent d" is intimately related to the degree of disorder in the mesoscopic damage process.
When d" varies from 0 to 1, the kinematical control parameter "�

c
moves from the canonical critical strain "c –

of dimension [L]0 – to the critical crack opening displacement wc – of dimension [L]1. Therefore, when d" = 0
(diffused damage, ductile behaviour), one obtains the classical response, i.e. collapse governed by the strain "c,
independently of the bar length. In this case, continuum damage mechanics holds, and the critical displacement wc

is subjected to the maximum size effect (wc � b). On the other hand, when d" = 1 (localization of damage onto
isolated sections, brittle behaviour) fracture mechanics holds and the collapse is governed by the critical opening
displacement wc, which is size-independent as in the cohesive model.

σu σu*

σ*σ

εu
ε ε*

εc*0 0

(a) (b)

Figure 7: Fractal cohesive model.

The three size effect laws (14), (15), (16) of the cohesive law parameters are not completely independent one
of the other. In fact, there is a relation among the scaling exponents that must be always satisfied. This means
that, when two exponents are given, the third follows from the first two. In order to get this relation, suppose, for
instance, to know d� and d". Generalizing Eqs. (15) and (16) to the whole softening regime, we get � � �

�
b
�d�

and w � "
�
b
(1�d"). These relationships can be considered as changes of variables and applied to the integral

definition of the fracture energy:

GF =

Z
wc

0

�dw � b
1�d"�d�

Z
"
�

c

0

�
�d"� = G�

F
b
1�d"�d� (17)

Eq. (17) highlights the effect of the structural size on the fracture energy, as Eq. (14) does. Therefore, comparing
Eqs. (14) and (17), we get the relation among the exponents:

d� + d" + dG = 1 (18)

Note that, from a physical point of view, the geometrical relationship (18) states that, after the peak load, the energy
is dissipated over the infinite lacunar sections where softening takes place inside the damage band (Fig. 6a,b,c).
While d" can get all the values inside the interval [0; 1], d� and dG tend to be comprised between 0 and 1/2
(brownian disorder). Eq. (18) provides a strict restriction to the maximum degree of disorder, confirming that
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the sum of d� and dG is always lower than 1, as previously asserted by Carpinteri through dimensional analysis
arguments [16].

It is interesting to note how, from Eq. (17), the fractal fracture energy G �
F

can be obtained as the area below
the fractal softening stress-strain diagram (Fig. 7b). During the softening regime, i.e. when dissipation occurs,
�
� decreases from the maximum value ��

u
to 0, while "� grows from 0 to "�

c
. In the meantime, the nondamaged

parts of the bar undergo elastic unloading (Fig. 7a). We call the ��- "� diagram the scale-independent or fractal
cohesive law. Contrarily to the classical cohesive law, which is experimentally sensitive to the structural size, this
curve should be an exclusive property of the material, it being able to capture the fractal nature of the damage
process.
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Figure 8: Tensile tests on dog-bone shaped concrete specimens (a) by Ferro [17]: cohesive law diagrams (b),
fractal cohesive law diagrams (c).

The model has been applied to the data obtained in 1994 by Carpinteri and Ferro [2, 18] for tensile tests on dog-
bone shaped concrete specimens of various sizes under controlled boundary conditions (Fig. 8a). They interpreted
the size effects on the tensile strength and the fracture energy by fractal geometry. Fitting the experimental results,
they found the values d� = 0:14 and dG = 0:38. Some of the �-w diagrams are reported in Fig. 8b, where w
is the displacement localized in the damage band, obtained by subtracting, from the total one, the displacement
due to elastic and anelastic pre-peak deformation. Eq. (18) yields d" = 0:48, so that the fractal cohesive laws
can be plotted in Fig. 8c. As expected, all the curves related to the single sizes tend to merge in a unique, scale-
independent cohesive law. The overlapping of the cohesive laws for the different sizes proves the soundness of the
fractal approach to the interpretation of concrete size effects.

More recently, van Mier and van Vliet [3] accurately performed tensile tests on dog-bone shaped concrete
specimens over a wide scale range (1:32) under rotating boundary conditions (Fig. 10a). They plotted the cohesive
law for specimens of different sizes and found that, increasing the specimen size, the peak of the curve decreases
whereas the tail rises [20]. In other words�u decreases whereas wc and GF increases, thus confirming the prediction
of the fractal model.

A preliminary analysis of the data obtained by van Mier and van Vliet [3] has been performed according to the
fractal cohesive model. We considered the average values obtained for the different specimen sizes. The data of
the smallest specimen size (D = 50 mm) were not considered, since, as stated by the authors, secondary effects
are present (e.g. the influence of the largest grains and the wall effect) that bias the results. Furthermore, the
authors were not able to obtain the whole tail of the softening branch for the specimens of the larger sizes. In
order to obtain the value of the fracture energy, they completed the cohesive laws via a linear extrapolation. This
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Figure 9: Tensile strength (a) and fracture energy (b) vs. specimen size: experimental data by Van Vliet [19] and
linear interpolation in the bilogarithmic plot.

procedure, although rigorous, leads to an underestimate of the computed fracture energy since it does not respect
the concavity of the curve. Therefore, we decided to complete the cohesive law diagrams in a somehow arbitrary
way maintaining the concave shape for all the specimen sizes (Fig. 10b). Observing the interceptions of the curves
with the axes, it is evident that the higher is the peak, the shorter is the tail.
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Figure 10: Tensile tests on dog-bone shaped concrete specimens (a) by van Vliet [19]: cohesive law diagrams (b),
fractal cohesive law diagrams (c). The dashed lines refer to extrapolated values.

Linear regressions in the bilogarithmic plots of tensile strength and fracture energy vs. specimen cross section
size were performed (Fig. 9). We found respectively a fractal fracture energy G�

F
equal to 9:22� 10�2Nmm�1:09

and a fractal tensile strength ��
u

equal to 6:42 Nmm�1:82, with fractal exponents dG = 0:09 and d� = 0:18. The
correlation coefficients were found to be respectively RG = 0:995 and R� = 0:990; their values close to unity
prove the soundness of the power law scaling. The relation (18) among the scaling exponents yields d " = 0:73, so
that the fractal cohesive laws can be plotted in Fig. 10c. Once again the superposition of the different plots denotes
the validity of the fractal cohesive model. Particularly, note the low scattering of the interceptions with the vertical
and horizontal axes in respect to the ones of Fig. 10b: they represent respectively the fractal critical strain " �

c
and

the fractal tensile strength ��
u

, while the area subtended by the fractal cohesive law diagrams provides G�
F

.
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To conclude, it is worth observing how fractal patterns and related size effects, often detected in concrete tensile
tests, can be seen as a consequence of the aggregate size distribution. Through stereological concepts and fractal
analyses, we gave a theoretical description of the role of the aggregate in the tensile failure of concrete specimens.
This seems particularly interesting, since, as pointed out recently [21], the aggregate is the cause of the tougher
behavior of concrete with respect to mortar and hardened cement paste. Further experiments and analyses in this
direction should be carried out in order to highlight the effects of aggregate grading and aggregate volume fraction.
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