TOWARDS CHAOS IN THE
DYNAMIC RESPONSE OF DAMAGED STRUCTURES

Alberto Carpinteri, Nicola Pugno

Department of Structural Engineering and Geotechnics, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino

carpinteri@polito.it, pugno(@polito.it

Abstract

The aim of this paper is to evaluate the transition towards chaos in the dynamic response of
multicracked nonlinear structures under excitation. The developed approach permits to
capture the sub-harmonic components in the structural dynamic response, describing complex
phenomena like the experimentally observed Period Doubling.

Sommario

In questo lavoro ci si propone di valutare la transizione al caos deterministico della risposta
dinamica forzata di strutture multi-fessurate non lineari. L approccio sviluppato permette di
cogliere le componenti sub-armoniche della risposta dinamica, descrivendo cosi fenomeni
complessi come il Period Doubling, recentemente osservato sperimentalmente.



1. Introduction

The aim of this paper is to develop a coupled theoretical and numerical approach to evaluate
the complex oscillatory behavior in multicracked nonlinear structures under excitation. In
particular, we have focused our attention on a cantilever beam with several breathing
transverse cracks and subjected to harmonic excitation perpendicular to its axis. The method,
that is an extension of the super-harmonic analysis carried out by Pugno, Ruotolo and Surace
(2000) to sub-harmonic and zero frequency components, has permitted to capture the complex
behavior of the nonlinear structure, e.g., the occurrence of period doubling, as experimentally
observed by Brandon (1998). The method described assumes that the cracks open and close
continuously (Carpinteri Al. and Carpinteri An., 1982) instead of instantaneously, as
suggested by experiments (Pugno et al., 2000). As a consequence, the cracks are not
considered to be either fully open or fully closed, but the intermediate configurations with
partial opening can also be taken into account. The period of the response is not assumed a
priori equa to the period of the harmonic excitation, as classically supposed (absence of sub-
harmonic components). This has permitted to capture the complex behavior of the nonlinear
structure. The analysis has systematically shown the presence of an offset (zero frequency
component) in the structural response. The differential nonlinear equations governing the
oscillations of the structure, discretized by the Finite Element Method, have been analyzed by
means of the Fourier Trigonometric Series and the Harmonic Balance Approach. This has
permitted to obtain a nonlinear system of agebraic equations, easy to solve numericaly.
Numerical simulations complete the paper.

2. Dynamic analysis

Considering a multicracked cantilever beam, clamped at one end and subjected to a harmonic
force with angular frequency « and amplitude F, acting perpendicularly to the axis a a given
position, the equation of motion, obtained by discretizing the structure with the Finite Element
Method, is (Pugno et al., 2000):

[MKa}+[DNa}+ [ Ka}+ 2 Ak [ GgBkab={F}, (D)

where [M] is the mass matrix, [D] the damping matrix, [K]+3 .[AK™)] the stiffness matrix of
the undamaged beam and [AK™)] is half of the variation in stiffness introduced when the mth
crack is fully open (see Pugno et al., 2000). {F} is the vector of the applied forces and {4} is
the vector containing the generalized displacements of the nodes (trand ations and rotations).
According to this notation, 7 ({4}) is between —1 and +1 and models the transition between
the conditions of mth crack fully-open and fully-closed. Assuming that this transition is
instantaneous and hence takes place discontinuously, ™ ({g}) is a step function and has the
sign of the curvature of the corresponding cracked element. With this ssimple model of crack
opening and closing, 1™ ({4}) can thus only be equal to -1 or +1. On the other hand, in the
present investigation as in the previous (Pugno et al., 2000), 1™ ({4}) is assumed to be alinear
function of the curvature of the corresponding cracked element. In other words, the cracks are
not considered fully open or fully closed, as the intermediate configurations with partial
opening are also taken into account. Thus, the stiffness varies continuously between the two



extremes of undamaged or totally damaged beam (fully open cracks), rather than stepwise.
The solution for the elements of the {4} vector 012 (i.e, |ql|2 can be integrated according to
Lebesgue) can be found by means of the following trigonometric series:
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in which we take into account, with an ad hoc introduced “complexity index” € (positive
integer), the sub-harmonic components of the dynamic response. This means that the response
could have a period P =P that is not a priori coincident with the period P of the excitation.
A value for ¢ tending to infinite describes a transition towards a chaotic (nonperiodic)
response.

It is interesting to note that, even if the trigonometric series (2) converges, it could not
be a trigonometric Fourier series. In fact, the Fischer-Riesz theorem affirms that it is a Fourier

series if and only if Z (]AU‘Z + ‘BU‘Z) converges. In this case, the Parseval equation:
=
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obviously implies:
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The last relationships permit to put the solution for the elements of {4} in the following
approximated form:
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where N should be large enough to provide a good approximation. The function ™ {{g}) is
considered linear versus the curvature of the corresponding cracked element, i.e.,
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where the numerator represents the difference in the rotations at the ends of the corresponding
cracked element and the denominator is the maximum absolute value that can be reached by
this difference: consequently, the generic component of function {g™}= r™{g}¥q} (that

appears in eq. (1)) can be expressed as:

g™ =Nan — a0 ) a:- @)



The same concepts argued for the ¢, components can be now applied to the g/, ensuring

that they can be developed in a trigonometric Fourier series and can thus be put in the
approximated form:
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Inserting relation (7), in its explicit form according to eq. (5) for the degrees of freedom i, my,
and my, into equations (9) and (10) and developing the integrals, gives the following
expressions:
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As the nonlinearity of the components of {¢™}= 7@ ({}fg} were expressed in a form
analogous to that of the components of {4}, as indicated by equations (8), (11) and (12), it is

possible at this stage to apply the Harmonic Balance Method, which leads to N different
systems of nonlinear algebraic equations:
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wherej=0,1,....N and for each vector we have { }'={,,.7,,..}" . In addition:
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p being the node position corresponding to the point where the sinusoidal force is applied.
Each system can be solved numerically using an iterative procedure interrupted by an
appropriate convergence test when the relative j-error for the {4} and {s, } vectors becomes

lower than a specified value; it isafunction of the kth iteration and has been defined as:
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The procedure consists in determining the unknowns 4; and Bj;. It is very interesting to note
that, assuming the coefficients C/"’, D™ to be zero at the first step, implies to force also the
sub-harmonic components to be zero (see eg. (14)). So, differently from the super-harmonic
analysis (Pugno et. a, 2000), we have to start with nonzero values for the coefficients ",
D{™ . To obtain good initial values for these coefficients, we have considered as a zero step a
super-harmonic analysis (€ =1); in this case, we can determine the unknowns 4, and B;
starting with zero coefficients ¢!/, D!™ and, by egs. (11) and (12), we have their initial
values for the sub-harmonic analysis. The solution thus obtained is used to determine the
known vector of the right hand-side of eg. (13). The procedure is repeated until the desired

precision is achieved and coefficients 4; and B, are found, while equation (2) is used to
determine the components of the approximate vector, which satisfies the nonlinear equation

(1).
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3. Numerical Analysis

The beam considered is the same as that described in the experimental analysis of Brandon
(1998). It is 270mm long and has a transversal rectangular cross section of 13x5 mm?. The
material is UHMW-ethylene, with a Y oung's modulus of 8.61x10® N/m? and a density of 935
kg/m®. We have assumed a modal damping of 0.002. It is discretized with 20 finite elements.
For our nonlinearity we have found that a complexity index € =4 and N=16 give a good
approximation (for larger values of € and N substantialy coincident solutions are obtained).
Thefirst natural frequency of the undamaged structureis f,=10.6 Hz.

As an example, some results of anumerical simulation are shown in Table 1 and Figures
1-3. It should be emphasized a strong presence of the component causing the period doubling
of the response («/2 component) as well as of an offset (zero component) describing a
constant negative displacement (i.e., downwardsin Fig.1) of the free end.

4. Conclusions

The proposed approach extends in a very powerful way the theory proposed by Pugno et a.
(2000) to (offset and) sub-harmonic components. It has permitted to catch complex
phenomena like the occurrence of a period doubling, as shown in the reported numerical
example and experimentally observed by Brandon (1998). In this context, of crucia
importance appears the “complexity index” € . For higher values of € we have to increase
also N (e.g., N=¢€?), so that the complexity of the numerical simulations considerably
increases. On the other hand, larger values of € permit to catch a transition towards



deterministic chaos, i.e., towards a nonperiodic dynamic response. This approach will be used
in the next future for an extensive parametric investigation.

Harmonic Sin Cos Amplitude
0 0 -5,1781 5,1781
w4 2,5728 -2,4656 3,5635
w2 16,1544 5,6516 17,1144
3/4w 0,0258 -1,6822 1,6824
o -44,9137 | -0,2925 44,9146
5/4w 0,487 0,4816 0,6849
32w 0,0675 0,6448 0,6483
7140 -0,1776 0,5622 0,5896
2w -0,4142 0,5074 0,655
9/4w -0,727 0,305 0,7884
5/2w -0,9927 -0,0939 0,9972
11/4w -1,0984 -0,8182 1,3697
3w -0,4109 -1,9223 1,9657
13/4w 1,7453 -5,3399 5,6179
712w -1,8971 1,0182 2,153
15/4w -0,545 -0,0476 0,5471
4w -0,1235 0,0887 0,152

Table 1: Zero- (offset), sub- and super-harmonic sin- and cos- components [mm)], for the free
end displacement (i.e., AZOJ.,BZOJ.,forj=0,1,...,16).
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Figure 1: Damaged structure and characteristics of the excitation
(a;=4.25mm, a,=4.8mm, F=2N, /= /27 =18.9Hz).
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Figure 2: Time history of the free end displacement and of the applied force.
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Figure 3: Zero- (offset), sub- and super-harmonic components for the free end displacement

(ie., ,/Azzoj+B220j forj=0,1,...,16).
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