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The aim of this paper is to evaluate the transition towards chaos in the dynamic response of 
multicracked nonlinear structures under excitation. The developed approach permits to 
capture the sub-harmonic components in the structural dynamic response, describing complex 
phenomena like the experimentally observed Period Doubling.  
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The aim of this paper is to develop a coupled theoretical and numerical approach to evaluate 
the complex oscillatory behavior in multicracked nonlinear structures under excitation. In 
particular, we have focused our attention on a cantilever beam with several breathing 
transverse cracks and subjected to harmonic excitation perpendicular to its axis. The method, 
that is an extension of the super-harmonic analysis carried out by Pugno, Ruotolo and Surace 
(2000) to sub-harmonic and zero frequency components, has permitted to capture the complex 
behavior of the nonlinear structure, e.g., the occurrence of period doubling, as experimentally 
observed by Brandon (1998). The method described assumes that the cracks open and close 
continuously (Carpinteri Al. and Carpinteri An., 1982) instead of instantaneously, as 
suggested by experiments (Pugno et al., 2000). As a consequence, the cracks are not 
considered to be either fully open or fully closed, but the intermediate configurations with 
partial opening can also be taken into account. The period of the response is not assumed D�
SULRUL equal to the period of the harmonic excitation, as classically supposed (absence of sub-
harmonic components). This has permitted to capture the complex behavior of the nonlinear 
structure. The analysis has systematically shown the presence of an offset (zero frequency 
component) in the structural response. The differential nonlinear equations governing the 
oscillations of the structure, discretized by the Finite Element Method, have been analyzed by 
means of the Fourier Trigonometric Series and the Harmonic Balance Approach. This has 
permitted to obtain a nonlinear system of algebraic equations, easy to solve numerically. 
Numerical simulations complete the paper.  
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Considering a multicracked cantilever beam, clamped at one end and subjected to a harmonic 
force with angular frequency ω  and amplitude ), acting perpendicularly to the axis at a given 
position, the equation of motion, obtained by discretizing the structure with the Finite Element 
Method, is (Pugno et al., 2000): 
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where [M] is the mass matrix, [D] the damping matrix, [K]+∑� [∆K(� )] the stiffness matrix of 
the undamaged beam and  [∆K( � )] is half of the variation in stiffness introduced when the Pth 
crack is fully open (see Pugno et al., 2000). { })  is the vector of the applied forces and { }T  is 
the vector containing the generalized displacements of the nodes (translations and rotations). 
According to this notation, ( ) { }( )TI

�
 is between −1 and +1 and models the transition between 

the conditions of Pth� crack fully-open and fully-closed. Assuming that this transition is 
instantaneous and hence takes place discontinuously, ( ) { }( )TI

�
 is a step function and has the 

sign of the curvature of the corresponding�cracked element. With this simple model of crack 
opening and closing, ( ) { }( )TI

�
 can thus only be equal to −1 or +1. On the other hand, in the 

present investigation as in the previous (Pugno et al., 2000), ( ) { }( )TI
�

 is assumed to be a linear 
function of the curvature of the corresponding�cracked element. In other words, the cracks are 
not considered fully open or fully closed, as the intermediate configurations with partial 
opening are also taken into account. Thus, the stiffness varies continuously between the two 



 
  

extremes of undamaged or totally damaged beam (fully open cracks), rather than stepwise. 

The solution for the elements of the { }T  vector 2/∈  (i.e., 
2�T  can be integrated according to 

Lebesgue) can be found by means of the following trigonometric series: 
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in which we take into account, with an DG�KRF introduced “complexity index” Θ  (positive 
integer), the sub-harmonic components of the dynamic response. This means that the response 
could have a period 33

a Θ=  that is not D�SULRUL coincident with the period 3  of the excitation. 
A value for Θ  tending to infinite describes a transition towards a chaotic (nonperiodic) 
response.   

It is interesting to note that, even if the trigonometric series (2) converges, it could not 
be a trigonometric Fourier series. In fact, the Fischer-Riesz theorem affirms that it is a Fourier 
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 	 %$  converges. In this case, the Parseval equation: 
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obviously implies: 
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The last relationships permit to put the solution for the elements of { }T  in the following 
approximated form: 
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where 1 should be large enough to provide a good approximation. The function ( ) { }( )TI

�
 is 

considered linear versus the curvature of the corresponding�cracked element, i.e.,  
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where the numerator represents the difference in the rotations at the ends of the corresponding�
cracked element and the denominator is the maximum absolute value that can be reached by 
this difference: consequently, the generic component of function ( ){ } ( ) { }( ){ }TTIJ �� =  (that 
appears in eq. (1)) can be expressed as:  
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The same concepts argued for the %T  components can be now applied to the 
&'()J , ensuring 

that they can be developed in a trigonometric Fourier series and can thus be put in the 
approximated form: 
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with: 
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Inserting relation (7), in its explicit form according to eq. (5) for the degrees of freedom L, P>  
and P ? , into equations (9) and (10) and developing the integrals, gives the following 
expressions: 
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As the nonlinearity of the components of ( ){ } ( ) { }( ){ }TTIJ PP =  were expressed in a form 
analogous to that of the components of { }T , as indicated by equations (8), (11) and (12), it is 
possible at this stage to apply the Harmonic Balance Method, which leads to 1 different 
systems of nonlinear algebraic equations: 
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where M=0,1,…,1�and for each vector we have { } { }STTST ����9�99 21= . In addition: 
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S being the node position corresponding to the point where the sinusoidal force is applied.    
Each system can be solved numerically using an iterative procedure interrupted by an 

appropriate convergence test when the relative M-error for the { }U$  and { }V%  vectors becomes 

lower than a specified value; it is a function of the Nth�iteration and has been defined as: 
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The procedure consists in determining the unknowns $ Y Z  and % Y Z . It is very interesting to note 
that, assuming the coefficients 

[\]^ _& , 
`abc d'  to be zero at the first step, implies to force also the 

sub-harmonic components to be zero (see eq. (14)). So, differently from the super-harmonic 
analysis (Pugno et. al, 2000), we have to start with nonzero values for the coefficients 

efgh i& , efgh i' . To obtain good initial values for these coefficients, we have considered as a zero step a 

super-harmonic analysis ( 1=Θ ); in this case, we can determine the unknowns $ Y Z  and % Y Z  
starting with zero coefficients 

efgh i& , 
efgh i'  and, by eqs. (11) and (12), we have their initial 

values for the sub-harmonic analysis. The solution thus obtained is used to determine the 
known vector of the right hand-side of eq. (13). The procedure is repeated until the desired 
precision is achieved and coefficients $ Y Z  and % Y Z  are found, while equation (2) is used to 
determine the components of the approximate vector, which satisfies the nonlinear equation 
(1).  
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The beam considered is the same as that described in the experimental analysis of Brandon 
(1998). It is 270mm long and has a transversal rectangular cross section of 13×5 mm2. The 
material is UHMW-ethylene, with a Young’s modulus of 8.61×108 N/m2 and a density of 935 
kg/m3. We have assumed a modal damping of 0.002. It is discretized with 20 finite elements. 
For our nonlinearity we have found that a complexity index 4=Θ  and 1=16 give a good 
approximation (for larger values of Θ  and 1�substantially coincident solutions are obtained). 
The first natural frequency of the undamaged structure is jI =10.6 Hz.  

As an example, some results of a numerical simulation are shown in Table 1 and Figures 
1-3. It should be emphasized a strong presence of the component causing the period doubling 
of the response ( 2ω  component) as well as of an offset (zero component) describing a 
constant negative displacement (i.e., downwards in Fig.1) of the free end.  

�
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The proposed approach extends in a very powerful way the theory proposed by Pugno et al. 
(2000) to (offset and) sub-harmonic components. It has permitted to catch complex 
phenomena like the occurrence of a period doubling, as shown in the reported numerical 
example and experimentally observed by Brandon (1998). In this context, of crucial 
importance appears the “complexity index”� Θ . For higher values of Θ  we have to increase 
also 1 (e.g., 2Θ≈1 ), so that the complexity of the numerical simulations considerably 
increases. On the other hand, larger values of Θ  permit to catch a transition towards 



 
  

deterministic chaos, i.e., towards a nonperiodic dynamic response. This approach will be used 
in the next future for an extensive parametric investigation. 
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0 0 -5,1781 5,1781 
ω/4 2,5728 -2,4656 3,5635 

ω/2 16,1544 5,6516 17,1144 

3/4ω 0,0258 -1,6822 1,6824 

ω -44,9137 -0,2925 44,9146 

5/4ω 0,487 0,4816 0,6849 

3/2ω 0,0675 0,6448 0,6483 

7/4ω -0,1776 0,5622 0,5896 

2ω -0,4142 0,5074 0,655 

9/4ω -0,727 0,305 0,7884 

5/2ω -0,9927 -0,0939 0,9972 

11/4ω -1,0984 -0,8182 1,3697 

3ω -0,4109 -1,9223 1,9657 

13/4ω 1,7453 -5,3399 5,6179 

7/2ω -1,8971 1,0182 2,153 

15/4ω -0,545 -0,0476 0,5471 

4ω -0,1235 0,0887 0,152 

 
 

7DEOH����=HUR���RIIVHW���VXE��DQG�VXSHU�KDUPRQLF�VLQ��DQG�FRV��FRPSRQHQWV�[mm],�IRU�WKH�IUHH�
HQG�GLVSODFHPHQW��L�H��� kk %�$ 2020 ��IRU�M 0,1,…,16���

 
 
 
 

270mm

)(t)=)⋅sin(ω⋅t)

90mm

D1 D2

180mm
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)LJXUH����'DPDJHG�VWUXFWXUH�DQG�FKDUDFWHULVWLFV�RI�WKH�H[FLWDWLRQ�

(D l =4.25mm, D m =4.8mm, )=2N, I= πω 2 =18.9Hz). 
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