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Abstract 
 
A portion of a flawed thin-walled shell with an elliptical-arc external surface flaw located in a straight 
zone (pipe) or in a joint zone (elbow) is analysed to evaluate stress field and fatigue life.  Such a 
portion is assumed to be a part of a shell of revolution, described by two principal curvature radii (R1 
and R2). By employing the superposition principle and the power series expansion of the actual 
stresses, an approximated stress-intensity factor (SIF) expression can be determined for different 
actual loading conditions.  In the present paper, the SIFs (weight functions) for five elementary stress 
distributions are determined through a FE analysis, by varying the relative curvature radius 

21 / RRr =  of the shell from 0 to ∞.  Then, the SIFs for cylindrical and spherical shells under various 
loading conditions are computed through the above weight functions.  Finally, a numerical simulation 
is carried out to predict the crack growth under cyclic internal pressure with constant amplitude.  
Some results are compared with those determined by other authors. 
 
Sommario 
 
La valutazione del campo tensionale e del comportamento a fatica di gusci fessurati viene 
condotta considerandone una porzione nell’intorno della zona danneggiata; tale porzione di 
guscio può avere singola o doppia curvatura ed è ipotizzata come parte di un guscio di 
rivoluzione avente due raggi principali di curvatura, R1 ed R2.  Utilizzando il principio di 
sovrapposizione e sviluppando in serie di potenze la reale distribuzione di sforzi agente, è 
possibile determinare in modo approssimato il corrispondente valore dello SIF.  Nella 
presente nota, i valori degli stress-intensity factors (SIF), o funzioni peso, per cinque 
distribuzioni elementari di tensione sono ottenuti mediante un’ analisi agli elementi finiti, 
variando il raggio relativo di curvatura ( 21 / RRr = ) del guscio da 0 ad ∞.  Mediante le 
suddette funzioni peso vengono poi ricavati i valori dei SIF per gusci cilindrici e sferici 
soggetti a varie condizioni di carico. Infine, tramite una simulazione numerica, viene 
determinato l’accrescimento a fatica della fessura superficiale nel caso di pressione interna 



ciclica ad ampiezza costante.  Alcuni risultati sono confrontati con valori reperibili in 
letteratura. 
 
1. Introduction 
 

Structural safety of pressure vessels, such as pipes, elbows, end closures, domes, should be 
assessed also by taking into account the influence of flaws, inclusions, cracks and so on.  As a matter 
of fact, these defects can remarkably affect the reliability of such components, especially when they 
are subjected to time-varying loading.  Several analyses of cracked pipes under tension and bending 
[1-4] or internal pressure [5-8] have been carried out, but only a few authors [9-11] have examined 
part-through-cracked double-curvature shells, due to the complexity of such flawed configurations. 

In the present paper, a portion of a thin-walled shell is considered as a part of a toroidal shell 
having the wall thickness t comparatively small in comparison with the principal curvature radii, 1R  
and 2R  (Fig.1).  An external part-through defect is assumed to initiate due to damage and then 
propagate under cyclic loading.  For sake of semplicity, the external surface flaw is assumed to lie in 
one of the principal curvature planes (Fig.1), and to present an elliptical-arc shape with aspect ratio 

ba /=α   and relative depth ta /=ξ  of the deepest point A on the defect front, where a is the 
maximum crack depth.  The fatigue fracture analysis of the above cracked shell is in accordance with 
some recommendations [12,13] which suggest to replace an actual surface defect by an equivalent 
elliptical-arc flaw. 

Firstly the stress-intensity factors (SIFs) along the crack front for five elementary opening 
stress distributions (constant, linear, quadratic, cubic and quartic) acting on the crack faces are 
determined by performing a three-dimensional finite element analysis.  Then approximate SIFs in 
cylindrical, toroidal and spherical shells under internal pressure, membrane stresses and local bending 
are computed through the above elementary SIFs, by exploiting the superposition principle and the 
power series expansion of the actual stresses.  Finally, a numerical simulation is carried out to predict 
the crack growth in shells under cyclic internal pressure.  Comparisons between the present results 
and those deduced by other authors are shown. 
 
 
2. Geometrical parameters  
 

The two principal curvature radii of the shell of revolution in Fig.1 are called 1R , in the flaw 
plane, and 2R  , in a plane perpendicular to the flaw plane, respectively.  The relative curvature radius 

*r  of the shell at the crack location is defined by the ratio between the above radii, i.e. 

21 /* RRr = .  In the following, the defect is termed transversal-like for 21 RR <  (i.e. *r  < 1)  and 
 longitudinal-like for 21 RR >  (i.e. *r  > 1).  The case of 21 RR =   refers to a portion of a spherical 
shell, for which it is meaningless to distinguish between a transversal flaw and a longitudinal flaw. 
Seven different cracked shell geometries are examined: 0* =r  (cylindrical shell with a transversal 
flaw),  3/1  ,10/1* =r  (toroidal shells with a transversal-like flaw),  1* =r  (flawed spherical shell), 

 10  ,3* =r  (toroidal shells with a longitudinal-like flaw) and  * ∞=r  (cylindrical shell with a 
longitudinal flaw). 

The dimensionless wall thickness of the shell is defined as tRR /* 1=  for *r  < 1 and 
tRR /* 2=  for *r  > 1 ;  for a spherical shell, tRtRR 21 /* == .  In the following, *R  is 



assumed to be constant and equal to 10. 
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Figure 1 
Doubled-curvature cracked shell 
 
 
3. Approximate stress-intensity factors  
 

The SIF of a cracked body under a given stress field is equal to the SIF produced by the 
stress distribution, acting on the faces of the crack and having the same magnitude but opposite sign 
with respect to the corresponding distribution in the body without cracks.  Five elementary opening 

stress distributions acting on the crack faces are considered: 
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(1) 
 

where au /=η  is a dimensionless radial coordinate, with origin on the external surface of the shell 
(Fig. 1).  For the n-th elementary opening stress distribution, the dimensionless Mode I stress-
intensity factor, which can be regarded as an influence function or a weight function, is given by: 
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(2) 
 

where 1)( =nrefσ  and )(nIK , the SIF related to the n-th load case, is obtained from the 

displacements determined through a three-dimensional finite element analysis. 
An approximate expression of a complex opening stress distribution, )()( uLIσ , where the 

subscript (L) indicates the generic load case, can be deduced by employing a truncated power series 
expansion of the actual opening stress and the superposition principle.  The corresponding 
dimensionless SIF can be expressed as follows : 
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(3) 

 

Common stress conditions for shells can be described through membrane stresses, 
corresponding to a constant stress distribution on the crack faces, or local bending stresses, 
corresponding to a linear combination of constant and linear stress distributions on the crack faces.  
In the case of a local bending, the linear stress distribution can be obtained from the following 
expression: 
 

( ))1()0()()( 2)( IIbIbI u σξσσσ −=  
 

(4) 
 

where )(bIσ  is the maximum value of the actual bending opening stress.  Analogously, the 

dimensionless SIF for a local bending can be deduced as follows: 
 

)1()0(),( *2** IItbI KKK ξ−=  
 

(5) 
 

where the subscripts b and t stand for bending and toroid, respectively. 
 
 
4. SIF results 
 

The dimensionless SIFs, )(* nIK , for the elementary opening stresses given in Eqn (1) are 

determined through Eqn (2) and a 3-D finite element analysis.  As an example, Figure 2 shows 

)0(*IK  (constant stress distribution) against *ζ , in the case of 3.0=ξ  and the relative curvature 

radius 21 /* RRr =  equal to 1/10, 1 (spherical shell) and 10, respectively.  The parameter 
h/* ζζ =  defines the position of the generic point P along the crack front (Fig. 1). The maximum 

SIF along the crack front is attained at the deepest point A ( 0.1* =ζ ) for low values of α ,  and  at 
point C ( 1.0* =ζ ) for high values of α . 
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Figure 2 
Dimensionless SIF under membrane loading for 3.0=ξ  and different values of α: (a) shell 
with a transversal-like flaw; (b) spherical shell; (c) shell with a longitudinal-like flaw 

 
Some of the SIF results determined for membrane and bending loading are reported in Table 



1 in the case of 0* =r , 1/3, 3 and ∞ ,  for ta /=ξ  = 0.1, 0.5, 0.8, and ba /=α  = 0.2, 0.6, 1.0.  

Furthermore, the dimensionless SIF IK '  ( ξII KK *' = ) at the deepest point A against the 

relative crack depth is plotted for a toroidal shell (  3/1  * =r ) under membrane loading (Fig. 3(a)) 
and local bending (Fig. 3(b)).  The reference stresses for such loading conditions are 1)( =mrefσ  

and )()( bIbref σσ = , respectively.  Each curve refers to a flaw with a constant value of the ratio 

tb /  (equal to 0.5, 1.0, 2.0, 4.0) and, consequently, the crack aspect ratio α  changes along a given 
curve. 
 
 
Table 1 
Dimensionless SIF for cracked shell under membrane and bending loading 

  r * = 0  r * = 1/3 
 

  (a)       
)0(*IK   (b)       

)(* bIK   (a)       
)0(*IK   (b)       

)(* bIK  
 

αα  ξξ 0.1 0.5 0.8  0.1 0.5 0.8  0.1 0.5 0.8  0.1 0.5 0.8 
0.2 A   0.9083  1.3519  1.6168    0.7923   0.6134  0.2725  0.8961 1.3823 1.6913  0.7817 0.6318 0.3097 

 C   0.5373   0.7153  0.9663    0.5099   0.5671   0.6252  0.5288 0.7214 0.9738  0.5018 0.5719 0.6287 

0.6 A   0.7511  0.9201  0.9949    0.6498   0.3481   0.0154  0.7381 0.9338 1.0133  0.6385 0.3558 0.0264 
 C   0.6317   0.8002  0.9610    0.5882   0.5416   0.4880  0.6249 0.8093 0.9802  0.5819 0.5476 0.4972 

1.0 A   0.6105   0.6907   0.7161    0.5224   0.3275  -0.0743  0.5990 0.6980 0.7209  0.5125 0.2202 -0.0701 
 C   0.6288   0.7263   0.8011    0.5826   0.4669   0.3571  0.6235 0.7325 0.8115  0.5776 0.4709 0.3622 

  r * = 3  r * = ∞∞  
 

  (a)       
)0(*IK   (b)       

)(* bIK   (a)       
)0(*IK   (b)       

)(* bIK  
 

αα  ξξ 0.1 0.5 0.8 0.1 0.5 0.8  0.1 0.5 0.8  0.1 0.5 0.8 
0.2 A 0.9026 1.5414 2.1719 0.7876 0.7289 0.5137  0.8730 1.5400 2.2781  0.7608 0.7251 0.5379 

 C 0.5433 0.8155 1.2026 0.5120 0.6085 0.7127  0.5425 0.8310 1.2616  0.5090 0.5729 0.6371 

0.6 A 0.7422 0.9559 1.0565 0.6422 0.3689 0.0424  0.7158 0.9231 1.0325  0.6182 0.3490 0.0267 
 C 0.6273 0.8189 1.0122 0.5836 0.5416 0.4823  0.6060 0.7758 0.9470  0.5635 0.5061 0.4321 

1.0 A 0.6015 0.7050 0.7310 0.5148 0.2243 -0.0664  0.5822 0.6783 0.7172  0.4973 0.2087 -0.0751 
 C 0.6263 0.7386 0.8267 0.5801 0.4707 0.3587  0.6011 0.6988 0.7817  0.5566 0.4420 0.3303 

 
 

The agreement between the present results and those by Joseph et al. [10] is quite 
satisfactory.  Negative values of the SIF for very deep flaws in shells under bending appears to be 
meaningless, since the crack closure leads to zero SIF values.  However, such results can be useful 
in practical cases when the superposition principle is applied. 
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Figure 3 
Dimensionless SIF for different values of b/t: (a) membrane loading; (b) bending loading 
 

5. Crack growth under cyclic internal pressure 
 

A cylindrical shell ( ∞=*r ) and a spherical shell ( 1* =r ) under cyclic internal pressure with a 
constant amplitude are examined by employing a two-parameter theoretical model [14] based on the 

Paris-Erdogan law ( ( )m
IKdNda ∆= Q/ ), where Q and m have been assumed equal to 1.83 × 

10-13 and 3 respectively, with dNda /  in mm cycle-1  and the SIF range ∆KI  in N mm-3/2 .  Some 
results are shown in the diagram of α against ξ in Fig. 4(a), for seven initial crack configurations.  
Results by Lin et al. [6] for a cylindrical shell are also reported.  It can be observed that the flaws 
considered tend to follow preferred propagation paths for both a cylindrical and a spherical shell, 
with slightly lower values of α in the latter case.  The interpolants of two curves for 1* =r  (in the 
range 8.02.0 ≤≤ ξ ) are given by : 
 

point 1: ( 00 ,αξ ) = (0.2; 0.2), i.e. an initial 

nearly straight-fronted flaw 
point 5: ( 00 ,αξ ) =(0.2; 1.0), i.e. an initial 

circular-arc-fronted flaw 

 

 

32  0.3375 -  0.2964 -  1.4076  0.0692-  ξξξα +=  
 

32  0.5550 -  0.7997   0.4510 - 1.0575  ξξξα +=  
 
 

(6) 
 

The crack depth evolution with the loading cycles is displayed in Fig. 4(b) for the flaws No.1 
and No.5 analysed in Fig. 4(a).  As can be observed, for a given value of *r , the surface crack 
grows more rapidly for a low initial aspect ratio 0α .  Furthermore, for a fixed flaw ( 00 ,αξ ), the 

number of loading cycles to attain a given value of ξ  is much greater in the case of a spherical shell 
(  1* =r ) than in the case of a cylindrical shell (  * ∞=r ). 
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Figure 4 
(a) crack patterns; (b) N−ξ  curves for the cracked shells examined 
 
6. Conclusions 
 

An elliptical-arc external flaw in a double-curvature thin-walled shell has been examined.  The 
stress-intensity factor (SIF) distributions under different opening stresses acting on the crack faces 
have been determined through a 3-D finite element analysis for several values of the relative 
curvature radius 21 /* RRr = , where 1R  and 2R  are the principal curvature radii of the toroidal 
shell considered.  Longitudinal-like flaws ( 1* >r ) show greater values of SIF with respect to 
transversal-like flaws ( 1*<r ) under the same type of loading, especially for low values of α and 
high values of ξ.  Then the SIFs for toroidal shells under membrane loading, local bending and 
internal pressure have been deduced by employing the superposition principle and the power series 
expansion concept.  Finally, the fatigue crack growth under cyclic internal pressure has been 
examined in the case of a cylindrical and a spherical shell.  The agreement between the present 
results and those determined by other authors is quite satisfactory. 
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