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Sommario 
 
L’International Committee for Large Dams (ICOLD), organizzazione internazionale promossa 
dalle maggiori aziende idroelettriche e da centri di ricerca universitari ed industriali, 
nell’ultimo “Workshop” tenutosi a Denver nel giugno 1999 ha trattato, accanto ad altri 
problemi tecnico scientifici di attualità nell’ingegneria delle dighe, l’analisi di una diga a 
gravità con particolare riferimento a fenomeni di frattura alimentati dalla pressione 
dell’acqua (“uplift”) lungo l’interfaccia tra calcestruzzo e roccia di fondazione. 
In questa comunicazione si assumono come dati geometrici e di comportamento 
dell’interfaccia quelli proposti dall’ICOLD per il “Benchmark exercise” [8] discusso nel 
citato incontro.  Gli scopi sono stati l’implementazione, la sperimentazione numerica e il 
vaglio critico comparativo di un metodo semplificato per la simulazione di fenomeni 
fessurativi lungo interfacce e di varianti del metodo stesso.  Precisamente, nella 
comunicazione si intende trattare i seguenti temi: 
(A) Modello d’interfaccia coesivo anolonomo con attrito.  Questo modello è formulato 
nell’ambito della elastoplasticità incrementale con una legge costitutiva che non soddisfa il 
postulato di Drucker sulla stabilità del materiale (cfr. [12]).  In questa comunicazione, la 
discontinuità di spostamento tangenziale (accumulata) in corrispondenza dell’interfaccia è 
interpretata come variabile interna del modello d’interfaccia coesivo con attrito dove 
l’interazione tangenziale è definita come funzione lineare a tratti di questa variabile interna 
(con assunzioni analoghe a quelle adottate in tutt’altro contesto in [6]).  Per quanto concerne 
gli aspetti computazionali, si utilizza un efficiente algoritmo per l’integrazione passo-passo del 
legame costitutivo elastoplastico. 
(B) Modelli olonomi di interfaccia tipo “cohesive-crack” per il modo I di apertura della 
fessura: lineare, bilineare (con “break point”), esponenziale (cfr [4]). 



(C) Messa in conto dell’ ”uplift” con l’assimilazione nel modello di interfaccia (cfr. [3]), in 
diverse situazioni di drenaggio. 
(D) Analisi globale, in un contesto di elementi finiti nel programma commerciale ABAQUS 
[1], utilizzando la formulazione e l’implementazione dei modelli di interfaccia di cui sopra.  
Per superare la soglia di instabilità è utilizzato l’algoritmo di Riks [14] e l’incremento di 
carico risulta incognito. 
(E) Impiego di metodi di programmazione matematica, recentemente applicati allo studio dei 
modelli di interfaccia tipo “cohesive-crack” che portano alla formulazione di un problema di 
complementarità non lineare [2], [11]. Nella presente comunicazione, questo approccio è 
adottato con riferimento al modello coesivo olonomo esponenziale per il Modo I di apertura 
della fessura.  La pressione del fluido è funzione dell’apertura di fessura in direzione normale 
con legge di tipo esponenziale.  Nelle analisi numeriche, il codice di calcolo (‘PATH’) 
sviluppato da Dirkse e Ferris [7] è utilizzato.  I risultati ottenuti con i metodi diretti non 
evolutivi risultano in buono accordo con quelli ottenuti attraverso l’approccio tradizionale 
passo-passo (evolutivo). 
 
Nonholonomic cohesive interface model with friction 
 
In this communication the nonholonomic cohesive model with friction proposed in [8] is formulated in 
the framework of incremental elastoplasticity, disgreganding the Drucker postulate of material 
stability (see e. g. [12]). 
It is well known that in a frictional contact, the interaction between normal and tangent components 
leads to a reduction of the local resistance of the interface (see for instance [6]).  The resistance 
“damage” can be easily related to the maximum relative “sliding” displacement between the two 
contacting surfaces, which assume the meaning of “internal variable”. 
In the present approach, the internal variable is identified as the cumulated tangential displacement 
jump between the interface surfaces.  This definition has been incorporated in the proposed cohesive 
model, assuming that the tangent reaction is a piecewise-linear function of the internal variable. 
In several works the elastoplasticity theory is used to describe the friction phenomenon (see e. g., 
[6], [12]).  In this approach, the tangential displacement discontinuity wt  across the interface is 

assumed to be the sum of an elastic wt
e  and an irreversible (permanent or plastic) part wt

p .  Herein, 

a mixed-formulation is used for the contact problem, thus the contact pressures pn and the 
displacements uj are unknowns. 
The interface law is governed by the following equation: 
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In Eq. (2) a potential π  represents the free energy function: π π π= +E L , where πE  is the elastic 

strain energy, and πL  is the energy locked in the material by rearrangements at the microscale 
reflected by an internal variable s.  A plastic potential $Φ  is adopted in Eqs. (3) to describe the 
evolution of the internal variables wt  and s introducing a non-decreasing plastic multiplier λ.  A 
superimposed dot means derivative respect to any strictly monotonically increasing parameter 
identificating the chronological time.  The function ),,( qpp tnΦ  characterizes the corresponding 

elastic domain, which is assumed to be convex.  For 0),,( <Φ qpp tn ,  (4-c) yields &λ = 0 , i.e. 

elastic behavior, while plastic flow is characterized by &λ > 0 , which, in view of (4-c), imposes the 
satisfaction of the yield criterion with Φ = 0 .  In the friction model the yield function Φ  is different 
from the plastic potential $Φ  (non-associated plasticity).  The failure surface and the piecewise-linear 
cohesive model are shown in Fig. 1.  Herein, the joint dilatancy is neglected, as in previous analyses 
on large dams carried out by Hohberg [9].  The values of the model parameters used in the 
numerical simulations are reported in Table 1. 
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Figure 1 

A) Failure surfaces; B) piecewise-linear cohesive model. $w t
p  cumulated tangential jump. 

 
Table 1 
Parameters used for the cohesive model with friction 

Parameter Value 

Shear Stiffness K [N/m3] 20 x 109 

Peak cohesion c0 [MPa] 0.3 

Friction angle θ [deg.] 30 

Fracture energy GIIa [MPa] 600 – 6000 

 
Holonomic cohesive crack models with uplift 
 
When the loads applied to a structure are monotonically increased in time by a common 
(amplification) factor, the hypothesis that the distribution of a non decreasing opening displacement 



wn (i.e. no local unloading takes place) is often practically acceptable, although not necessarily 
fulfilled.  Thus, disgregarding unloading, the interface constitutive model can be expressed by a 
holonomic law, namely a nonlinear elastic (path-independent) relation between stress and opening 
displacement.  At time t, the locus of potential or actual displacement jumps can be divided in three 

portions: (i) fully opened crack Γd
c , where no interaction exists (p = 0), (ii) undamaged elastic 

material Γd
e  not involved yet into crack opening, (iii) the process zone Γd

p  where (p ≠ 0).  As for 

the transmission of shear force pt along the craze zone, the assumption that no bound on pt and no 
discontinuity of tangential jump is introduced )0( =tw  [4].  The different Cohesive Crack Models 

(CCMs) considered for case (iii), are shown in Fig. 2. 
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Figure 2 
Mode I: Holonomic piecewise-linear cohesive crack models with uplift: (A) Linear (B) 
Bilinear (with “break point”); (C) Holonomic exponential cohesive crack model with 
uplift. 

 

In Fig. 2, p is the water pressure, αeff  is the drain efficiency coefficient and α β β β, , ,c f  are model 

parameters.  A linear variation of pressure with the opening displacement in the process zone is 
assumed for the linear and bilinear cohesive crack models (Fig. 2.A-B) in accordance with the 
experimental evidence [3], while an exponential variation is assumed for the non linear cohesive 
crack model in Fig. 3.C. 
In order to compare the results obtained with the different cohesive crack models, the same fracture 
energy )/90( mNG I

f =  and the peak tension strength )3.0( MPapc =  are considered in numerical 

analyses.  Further, the following parameters are assumed for the piecewise-linear cohesive law with 
“break point”: α β= =025 014. , . . 
 
Methods and results: an outline  
 
A commercial finite element code ABAQUS [1] has been used for the numerical simulations.  The 
cohesive interface models presented above have been implemented into this code.  Implementation 
details can be found in [13]. 



The geometry of the dam’s cross-section is shown in Fig. 4.  Both concrete and rock were assumed 
to behave elastically (rock: Er = 41000 MPa, νr = 0.10, concrete: Ec = 24000 MPa, νc = 0.15), the 

weight densities for the concrete is γ c Kg m= 2400 3 , the rock self weight is neglected.  In the 
evolutive analysis, the water elevation is gradually increased up to the top of the dam.  Then, an 
indirect displacement control algorithm (‘arc length’ method) [14] is used to determine the peak and 
post peak load carrying capacity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
Geometry and boundary representation for the dam 

 

The finite element mesh used in 
the fracture analysis is shown in 
Fig. 4 a total of 3703 node and 
4358 four node isoparametric 
elements are used in the 
discretization.  It is important to 
note that the mesh size in the 
interface is about 1/20 of the 
characteristic cohesive length in 
order to obtain mesh-size 
insensitivity results. However, 
this mesh is very expensive 
because of the same size of the 
element is used along the 
interface, while the finer 
elements should be used only in 
the cohesive zone.  An 
adaptive remeshing strategy 
should be employed in order to 
obtain numerical solutions with 
a controlled accuracy.  A tool 
for evaluating the error of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

solution computed with a given 
mesh and a refinement 
algorithm to define a new 
spatial discretization should be 
introduced.  An algorithm for 
self-adaptive procedure in 
Limit Analysis can be found in 
[13]. 
The results obtained by the 
nonholonomic cohesive model 
with friction are partly 
illustrated by Figs. 5-6   
Figs. 5 and 6 show the 
nondimensional overtopping 
load (Hot/Hd) versus the 
nondimensional crack mouth 

 

 

 



Figure 4 
Detail of mesh employed in the calculations showing the 
square element along the interface 

 

opening displacement 
(CMOD c0/GIIa) and versus 
nondimensional crack mouth 
sliding displacement, 
(CMSD c0/GIIa), 
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Figure 5 
Nondimensional overtopping load versus nondimensional 
crack mouth opening displacement for different values of the 
fracture energy. 

 

respectively, for     two 
different values of the 
fracture energy (GIIa = 
600 N/m, GIIa =6000 
N/m).  In the Fig. 5, it is 
interesting to note that the 
CMOD increases until the 
maximum value of the 
overtopping load is 
reached, then it decreases. 
A penetration is permitted 
between slave and 
master surfaces in order 
to obtain the solution. 
Thus, due to the coupling 
of the non- linearities from 
cohesive law with 
friction    and 

and contact conditions changes, the numerical solution obtained by the traditional “trial and error” 
contact algorithm often show unstable behavior in the post-peak range.  In the Fig. 6, the post peak 
branch of the curves decrease until the usual Coulomb friction conditions are obtained. 
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The results obtained by 
the holonomic cohesive 
crack models for mode I 
opening the fracture are 
reported in Fig. 7.  These 
results show that the effect 
of the uplift in the process 
zone significantly  reduce 
the  load carrying  
capacity of  the  dam.  In 
particular,  if  the  
piecewise linear cohesive 
model with ‘break point’ 
is considered and the 



Figure 6 
Nondimensional overtopping load versus nondimensional 
crack mouth sliding displacement for different values of the 
fracture energy. 
 

penetration of the fluid in 
the ‘process zone’ is 
assumed up to ‘break 
point’ the     maximum 

overtopping load is greater than one obtained by the linear cohesive model in which the fluid can 
penetrate entirely the process zone.  Further, it is important to note the effect of the position of the 
drain axis.  The reduction of the uplift due to the drain occur after that the maximum value of the 
overtopping load is reached.  Thus, a correct position of the drain axis is important in order to 
guarantee the safety of the dam. 
The behavior of the dam when the cohesive crack model for mode I opening of the fracture is 
assumed is strongly different from the case in which the nonholonomic cohesive crack model with 
friction is considered.  Tests on the specimens of the dam-foundation interface [10] show that the 
frictional behavior is important, thus a nonholonomic cohesive model with friction should be used in 
order to evaluate the maximum load carrying capacity of the dam. 
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Figure 7 
Nondimensional overtopping load versus nondimensional 
CMOD displacement for different values of the fracture 
energy. 

 

Finally, an innovative 
method recently proposed 
in [2], [5], [11] based on 
the formulation of the 
interface model as 
Nonlinear Complentarity 
Problem (NCP) is 
applied.  Herein, this 
method is adopted with 
particular reference to the 
holonomic cohesive 
exponential model for the 
mode I opening of the 
fracture.  The uplift 
pressure is taken into 
account in the constitutive 
model. 
The formulation of the 
problem as an NCP and  
the use of mathematical  

programming  algorithm  (e.g. ‘PATH’ solver)  [7] has  the  following  advantages:   (a)   can 



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 25 50 75 100 125 150 175 200 225 250 275 300
CMOD GIf/Pc

H
O

T
/H

D

without uplift (ABAQUS) 

 without uplift NCP (PATH)

 with uplift (bf = 11.11) (ABAQUS) 

with uplift NCP (bf = 11.11) (PATH)

 
Figure 8 
Nondimensional overtopping load versus nondimensional 
crack mouth opening displacement for exponential Cohesive 
Crack Models (CCM).  Mathematical programming (‘PATH’ 
solver) versus ABAQUS code. 

 

allow to capture the whole 
set of the multiplicity  
solutions of the quasi-
brittle fracture analysis [2], 
(b) the holonomic single-
step analysis of the 
structural response 
(including cohesive 
cracks)  to  given  external  
actions  is lesser  
expensive than the  
traditional time-stepping 
(evolutive) procedures 
[11]. 
The results are reported in 
Fig. 8,  and they are in 
good agreement with time 
stepping-evolutive 
analysis. 

The author’s computational experience indicate that there is no certainty of finding all the solutions.  
In fact, for a given load only the solution on the ascending branch of the response curve is obtained 
(see Fig. 8).  Thus, further research work is needed in order to achieve the above results for general 
case in a more reliable and efficient manner. 
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