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Abstract

In the present work, the problem of an infinite orthotropic body with a semi- infinite line
crack propagating a congtant velocity in the intersonic regimeis andyzed.

Sommario

In questa memoria 9§ esamina il problema di una fessura rettilinea che S propaga in un
meateride ortrotropo con velocitacogtante, in regime intersonico.

1.Introduction

The theoreticd study of intersonic crack propagation, i.e. when the crack tip velocity is brger
than the shear wave ve ocity of the materid, is drawing the efforts of many investigators.

Particular attention has been devoted to sudy the intersonic crack propagation aong
bimaterid interfaces. Theoreticd andyses peformed by Lin e d.[1], Yu and Yang[2] and
Huang et d.[3] among others, have shown that the asymptotic dagtic fidds for intersonic
interfacial  crack propagation is predominantly of a shear nature and the power of dtress
sngularity a the crack tip is adways less than one half. In addition, the above mentioned
sudies showed that a pure Mode-l, Steady date, intersonic crack propagation is impossible
because the energy release rate takes an unbounded negative vaue.

Recently, the theoretical invedtigation of intersonic crack propagation has been extended to
orthotropic materias as well as to unidirectiona fiber reinforced compostes. Piva an
Hasan[4] developed the sngular asymptotic andyds of intersonic crack growth in orthotropic
materids and Huang et d. [5 extended the andyds to unidirectiond fiber reinforced
composites, modelled as orthotropic materials.

In the present work, the problem of an infinite orthotropic body with a semi- infinite line
crack propageting at condtant velocity in the intersonic regimeis analyzed.

The badc andyss is performed by usng an gpproach which differs from those used in the
above mentioned papers. In particular, the locd eadtic fidlds may be obtained by assuming a
separaed varidbles scheme for the displacement fidd which adlows solving the dadtic
problem without the use of the complex variable technique. The asymptotic near-tip



expressons of the dadtic fidds may be obtained for Mode-l and Mode-Il intersonic crack
propagation.

2. Foundation

Congder an infinite orthotropic dastic medium with the axes of dadic symmetry coinciding
with the axes of a Cartesian coordinate syssem O (X, Y, 2).

By assuming plane dress conditions, the sysem of equations of motion governing
elastodynamic problemsin the X-Y plane are:

C11 Uxx * Ce6 Uyy + (C12 + Cs6) Vxy= I' Ut , Cs6 Vxx + Co2 Vyy + (C12 + Cep) Uxy = I Vit (2.1ab)

in which u = u(X)Y, t), v=v(X)Y,t) are the displacement components in X and Y directions
respectively, t is the time, r is the mass dendty of the materid and ¢ are the eadtic
coefficients. The in-plane stress-strain equations may be written as follows:

Sxx = C11 Ux+ C12Vy , Syy= Ci2Ux+ C2 Vy ,txy= Ces (Uy+ Vx)  (2.2ab,C)
By setting x = X-ct, y = Y, where c is a constant speed, egs. (2.1a,b) become:

U+ aly + 2DbVvyy =0, Vix+ &g Vyy + 20y Uy = 0 (2.3a,b)
where:
66 24 =

_ Cip * Cee __ %» A - C12 T Cee
a——(—), Y, a=— v, 24 —ﬁ—) (2.4a,b,c,d)
The quatities M, =c/c; and M, =c/cg ae the Mach numbers, where ¢ =(clllﬁ)}é and

Cs = (066/ﬁ)% are the longitudinal wave speed and the shear wave speed of the materid,
respectively. According to [4] the system of equations (2.3a,b) may be rewritten as.

O, + AC")y =0 (2.5)
where F isa4x1 matrix vaued function defined as;

0" = (01,0,,04,0;) = U uy vy vy) (26)

and A isa4x4 congtant matrix, given by:

830 a 23 o0 0
-1 0 0 0=
A=¢ . N 27
28, 0 0 a;~
€0 0 -1 0}
The characteristic equation of (2.7) is:
m*+ 2aym’*+a; = 0 (2.8)

inwhich:

2a;= atay-4bb,, a=aa (2.9



In what follows the intersonic regime, O<M31<l and M,=>1, will be assumed so that eq.(2.8)

4 Y2
provides the four eigenvalues my=p, m=-p, nMe=iq, My=-iq, with p :gaf - az)}/2 - alg}/
) A
and q= é(af - az)}/2 + ala}/ positive numbers.
According to [4] the system (2.5) may be transformed to the following form:
Yx+BY,=0 (2.10)
where:
F=PY (2.11)
and:
&i 2@2 ] 2tx)2 0 Zmz 9
¢ a+p® a+p’ a- q°+
g -
p=g 2 2»  2m 4 (2.124)
ca+p a+p° a-q -
¢ -Pp Y -q 0 -
§ 1 1 0 1 4
gep 0 0 09
0O -p 0 O0-=
B=Plap=F¢ P N (2.12b)
¢0 0 0 - q-
0 0 q 05
Eq.(2.10) leads to the first order systems:
YixtpY1y=0, Yacpy2=0 (2.13a,0)
and:
Yaxayay=0, Yaxtays=0 (214ab)
It should be noted that the system (2.13) is of hyperbolic type whereas egs. (2.14) represent a
Cauchy-Remann sysem.
By sdtting:
Z=Y1ty2 , YEY1Yo2 (2.15a,b)
it may be shown that the above functions stisfy the following system:
z+pyy=0, yx+pz=0 (2.16a,b)
which leads to stisfy the same wave equation:
ZoP°Zy=0, VP Yyy=0 (2.17ab)

Keeping in mind egs.(2.6), (2.11), (2.124) and (2.15a,b) the stress-gtrain relaions (2.2) may
be rewritten as:



S éyy tyy
C66 Ces Ces
where:
| G2 | Cu 28 q° 0 Cp  Cu &28p° _ _C2 G2 224 ¢ 0
1= —+— =—-— 3=—+
Ces Cos &a - Q° z Ces C66 a+p° Qj Ces C66 a- q g
C c,, ®2A
|4:£_ 12 p qg( - 1)_, pgl_
Ces  Cos a+p ;a a-q a+p !ZJ

In what follows egs.(2.14a,b) will be integrated by referring to the system of moving polar
coordinates defined by: x=rcosq , y=rsinq, r>0 , -p<qgJp, and assuming a separated
variables representation for the displacement fidd, i.e.:

u=ru(q), v=révie) (2.19)

where the exponent g will be determined through appropriate conditions.
By using (2.6), (2.11), (2.12a) and (2.19) gives.

ys(ra)=ron(@) . ya4(re)=r*"n(a) (2.20a,0)
where:
2k 1 _ A\
rofa) = £ ey )+ oscly )+ (@)- sinav (‘“)1% (221)
2k A TURRTA
h4(e):—igcose U(e)- sné U (e) [g;nev )+coseV ] (2.22)
a a+p Z)
k= 2+ 7 qz).

4b(p +q )
3. The general solution of the Cauchy-Riemann system

The generd solution to the Cauchy- Riemann system (2.14) may be obtained by introducing
the following polar- coordinates transformation:

n=ra@Vt . a=tg 1?%2 (31ab)
%]

with g(q) = cosqq + (sin’g) / g°. In view of (3.1) the functions (2.20) become:

gs(rli%):rlngs(Ch) , 94(r1’Q1):r1|-1H4(Q1) (3:2ab)

where:
Halar) =alala)] ohala)] .« Hala) =da@ ] Fha)]  (33ab)

By usng therule of differentiation:



1 _Cosql ﬂ - anl i 1 :—Q nq1 l +—C05q1 l (34a1b)

X i, rn o "X q anp Yoy
Eqs(2.14) lead to the following system in the unknown Hz(cp) and Ha(qp):

gedng,  cosg, 6 (ql) ( aeosql - smqloaeH (e)o

35
- COSCy smqlggH ganl costy g&H (Q) 59
which may be reduced to the system with constant coefficients:
SH.@)p Ho-) 0 mH.a);
. e 0 -(g- s . .
By noting tha the matrlx.A—g(g L 0 3 has complex coniugates eigenvaues
} 7]

I,=ilg- 4,1, =1, oneobtansthe general solution to (3.6) in the following form:

Haloh) = cycos(g- 2oy + csinig - oy Hy(ar)= elg)lessinig- 4oy - c,coslg- Len)(3.7ab)

where ¢; and ¢, are arbitrary constants, and e(g) = syn(g- 1).
Thence, the required generd solutionto egs. (2.14) is.

ys =17 eicos(g- 1)y (a)+ csinlg- Yoy (a) (38)
y 4 =efe,snig- 1oy (a)- c,c0s(g- Yay(a)] (39)
inwhich o (0) is defined by (3.1b).
4. Statement of problem-Particular solutionsfor Mode |l and Mode || crack propagation

Congder the dastodynamic problem of atraction-free semi-infinite crack Stuated aong the
fixed X-axis and propagating with a congtant velocity ¢, such that cs<c<c (Fig.1).
By using (2.16), the sSmmetry conditions:

ALY A
t y uxy)=uxsy) , V(Xy)= -v(x.-y) (4.1ab)
I C R
required for Mode | fracture, lead to the following
------- — , conditions ahead of the crack tip:
X X
U’ (0)=Vv(0)=0 (4.2

Fig.l
In the same way, from the skew-symmetry conditions.

U(X!y): -U(X,y) ) V(X!y):V(X!'y) (43a1b)
valid for Mode |1 fracture, one obtains;
U(0)=V'(0)=0 (4.4)



Applyiing conditions (4.2) to egs.(2.20) gives.

é 0
ya(x0)=0, y ,(x0) = ()% * 2 &g (0) + —2° -V'(0)g, x>0 (4.5a,0)
ag a+p 0

In order for the solution (3.8) to satisfy condition (4.53) it has to be valid that ¢;=0.
Thence, the solution to the Cauchy- Riemann system (2.14) for Mode | fracture reduces to:

yi=crdisng- Joa)  vi=-celQ)P oslg- Doyla)  (46ab)
Conditions (4.4) applied to (2.20) gives.
g12k é 2bg V
ya(x0)=0,y 5(x0) =(x) %' = &1 40) +——=;V(0)g, x>0 (4.7ab)
qe a+p Q

therefore, for Mode |1 of fracture, the following solution is obtained:

y3 =crf teodg- Yay(a) v i =crf 'sin(g- Yay(a) (4.8ab)
5. The wave-type solutions
The genera solutions to wave equations (2.18a,b) are:
_:®& yo & Yo _ 2. yo0 & yo
z(x,y) = fgX+=z+ figX- ==,y (X, ¥) =ggX+ ==+ g;ex- ==  (5.1ab)
& 05 & ps £ s & b
The two functions ,(x- y/ p) and g,(x- y/ p) represent signastravelling to the right of

the crack tip which is physically meaningless as pointed out aso in previous papers ( see for
example[4,5]). Therefore it will be sated that f1=0;=0 so that :

2(xy)=f §<+ YL yxy)= g? + 32 (5.2a))
Pg Pg

For Mode | of fracture the stress-Smmetry condition:
tyy(X,04) |, YXY=H¥ (5.3)

and the traction-free condition on the crack faces:

Syy(x,08) , ¥x¥=0 (5.4)
applied to (2.17c,b) lead respectively to:
y'(x04+)= :iy3' (x,0%)= illicze(g)(- x)? 'singp,x <0 (5.5a)
6 6
z'(x0)=- I—3y 1(x0%)=- :—302e(g)(- x)¢ *cosgp, x <0 (5.5b)

I4 4



where egs.(4.6a,b) have been used. The Cauchy data (5.5) alow to obtain the solutions (5.2a)
and (5.2b) in the following form:
M_ |y|_

2! y)=- 1 o) cosgog g (5.69)

y'(x,y)=-cz:—ze(9)sngosgn(y)§ |y|; é |y|— (5.6b)

where H( ) is the Heavisde sep function. For Mode Il of fracture the stress-symmetry
condiition:
Syy(X,0H=0 , [x|<¥ (5.7)

and the traction-free condition on the crack faces:

t xy(x,089=0, x<0 (5.8)
give
y "(x04%)= :5y”(x,01):—||—501(- x)¥ *cosgp, x<0 (5.99)
6 6
2" (x0%) =- ||3y4( X0+ )_i:_%l(- X)? lsingo, x<0 (5.9b)
4 4

Thence, for Mode Il of fracture the required solutions are;

2" (x,y) = ¢, 2 Sngpsn( y)- M |- HE - |- (5.108)
YAy, g g |
|Y|0

y"(xy)=-c cosspg X0 Hg X- |y|— (5.10b)

Both lutions (5.6) and (5.10) are defined in the Mach cone, lyl<-px and x<0, and the hdf-
lines [y|= -px, x<O represent the front of a shock wave following the propagating crack tip. In
Fig.2 is represented the angle D=p-tg*(p) between the shock front and the upper crack face as
a function of the Mach number My, for Graphite Epoxy, whose rdevant materid parameters
ae C11/C66= 27,385, C22/C66: 2,239, C12/C66= 0,716.

6. Power of stresssingularity

53 - The exponent g is determined by substituting (5.6)
5 - | and (5.10) into egs.(2.16). One obtains:
2,2 e g=G+N; 61)
18 / for Mode |, and:
g = Gi+N (6.2)
14 for Mode I, where:
~ 1 l5lg % 1 | 4l

1T - - - - A =-=tg?38 A, ==tg!-25(6.3ab

1 2 3 4 5 Mz2g ! 6gl4l ! 6gl3l( ab)

Fig.2



and N1, N, are arbitrary integers.
In Fg.3, the quantity G is represented vs. M, for Graphite Epoxy. It should be noted that:

0<G<l/2 (6.4)
As a consequence, follows that:
G:-G-Ll2 , -1/2<G,<0 (6.5)

Thence, boundedness of displacement at the crack tip requires to chose N;=0 in (6.1) and
N2=1in (6.2). Therefore, the order of stress sngularity is:

1 1

[l
m=g-1=-=tg!36-1 -1<m<-= 6.6
n=9 o g Lle | 5 (6.6)
for Mode | of fracture, and:
1, ql4ls 1
= -1l="tg 22, - =<m, <0 6.7
m =9 D g Il 5 N (6.7)

for Mode Il of fracture.
In Figs. 4-5 the quantities npand N are represented as functions of M, for Graphite Epoxy.

1 2 3 4 5 Mz 6
1
n — 0,00
0.8 - om1”o
0,8 '
0.7 -0,20
06 -0,30
0,5 -0,40 iy
0,4 . —— L/
0,50
1 2 3 4 5 M2 ¢
Fig4 Fig.5
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