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Abstract

When conddering a sctructural dement with a re-entrant corner, the experimenta andyss shows
how the failure load increases with the angle of the corner. In other words, the failure load increases
with a decrease of the mass of the dtructure, in oppostion to what we are used to observe in
pladticity. To predict this behaviour, a theory, based substantidly on the hypotess of existence of a
fracture quantum, is herein presented. Theoretica predictions and experimenta results seem to agree
satisfactorily.

Sommario

Considerando un elemento strutturale prowisto di angolo rientrante, la sperimentazione
evidenzia come al crescere dell’apertura dello stesso, a cui corrisponde un decremento di
materiale della struttura, il carico di collasso aumenti anche notevolmente. Awiene cioé un
fatto anomalo, opposto a quanto si € soliti osservare in plasticita, ove un decremento di
materiale in una struttura porta ad una riduzione della sua capacita portante.

Per prevedere tale fenomeno viene proposta una teoria basata sull’ipotes di esistenza di un
guanto di frattura. Tale teoria risulta essere in buon accordo con I’ evidenza sperimentale.



1. Introduction

Since the pioneer paper by Williams [1] the problem of dress intensfication a the vertex of re-
entrant corners has not been sufficiently addressed if compared with its consderable practica
importance. Shapes and Sizes of notches or re-entrant corners in structural components are studied
more frequently than shapes and Szes of cracks. In spite of this, fracture mechanics applied to sharp
cracks by Griffith [2] and Irwin [3] and has been broadly developed in the last three decades, even
if only as a specid case of the more generd problem of re-entrant corners.

Carpinteri [4] has generdized the expresson of the brittleness number to study the transtion
between brittle and ductile collgpses and the dress-intendty factor a the vertex of a re-entrant
corner gpplying Buckingham's Theorem. In the same paper a shape function for generdized stress-
intengty factor, assuming a combinaion of LEFM and ultimate strength function, is defined.
According to the last hypothesis and to the results of an experimentd investigation, the vaues of
stress-intengty factors varying the corner angle are reported.

In Seweryn’s paper [5] arelation between the siress-intensity factor for a corner and that for a
crack, obtained from the Novozhilov's [6] brittle fracture criterion, is presented. This criterion is
based on the hypothess that the fracture of solids is a discrete process: the destruction of the
connection between just one pair of atoms will be a fracture quantum. Seweryn’s equation agrees
with experimentd results.

Purpose of the present paper is the prediction of the fallure load for a structurd member with a
re-entrant corner [7]. The theory presented herein is based on the fracture criterion examined by
Novozhilov in [6] and on the generdized stress-intengity factor obtained by Sewerynin [5]. Tanksto
the last expresson it has been possble to obtan the generdized shape function defined in
Carpinteri’s paper [4] and therefore the fallure load of the structure. The theoreticad predictions
agree with the experimenta results satisfactorily.

2. Platein tension

Congdering alinear dadtic plate with a boundary crack, the symmetrica stress field around the tip of
the edge-crack can be written as.

s; =K r*?s,(j) (1)

1]

where K| is the stress-intengity factor for the Mode I, r and| are the polar coordinates represented
in Figure 1 and S; isafunction describing the angular profile of the stressfield.
For every structureit is possble to express the stress intendity factor as.

K, =sb"*f(a/b) 2)



where s isthe nomind dress, b is acharacteristic Sze of the structure, aisthe crack lengthand f isa
shape function depending on the geometry of structure and on the ratio a/b. The Sress of fallure st is
achieved when K, isequd toitscriticd vdueKc:

Kc=s,b"f(al/b) (3)
The equations presented can be generalized to the case of re-entrant corner with angle g.
Williams [1] proved that, when both the notch surfaces are free, the symmetricd stressfidd at the
notchtipis
Si = K:(g)r_a(g)sl(jg)(j ) (4)
where the power a of the stress angularity is provided by the eigen-equation:
(1- a)sin(2p- g) =sin[(1- a)(2p - 9)] ©)
and ranges between “4when g=0) and zero (when g=p).
If Buckingham's Theorem for physical smilitude and scde modding is gpplied and stress and

linear Sze are assumed as fundamenta quantities [4] it is possible to write an equation anaogous to
eg. (2):

K (g)=sb*® t(g,a/b); [K|] =[A[L]*? (6)
When the angle g vanishes, eg. (6) coincides with eg. (2), whereas when g=p the stress-angulaity
disgppears and the generdized stress intensity factor K, assumes the physical dimensions of stress

and becomes proportiond to the nomina stress s. The sress of failure sy isachieved whenthe K,
isequa toitscritica vaue K.

Kie(g)=s"b* 1" (g.a/b) (7)

If the angleis close to zero the corner becomes a crack and eg. (7) becomes eg. (3), where f isthe
following polynomid function (a/b<0.6):
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In the opposite case of angle closeto p, eq. (7) becomes:
Kic(g=p) =KL =s, =s% g(g/b) (9)
where the well-known function g takes into account the reduction of the ressting cross section:

a0 1
= 10
%oz 1 a/b (19




3. Three-point bending

A three-point bending specimen with a middle re-entrant corner is now considered.
The stress-intensity factor can be expressed as:

Pl

Ki(9)=—=&r

Rl CEL) (11)

where P is the externa load, and |, t and b the length, thickness and height of the beam. Eq. (11), in
the critica condition, becomes:

Kic(g) =tbfc—§(|g “(a.ab) (12)

where f is the unknown generalized shape function. For a crack eg. (12) assumes the following
form:

Kio = Kic(9=0) =255 () (13

wherefunction f can be expressed as follows (a/b<0.6):
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If the angle becomes flat the generdized stress-intengty factor becomes:

P
tb2

Kic(g=p) =Kf =s, g(a/b) (15)

where function g describes the reduction of the resisting cross section:

o 3/2

Rbo (1- alb) (16)

4. Fracture quantum and gener alized stress intensity-factor

In Seweryn’s paper [5] a relation between the stress-intengity factor for are-entrant corner and that
for acrack is obtained from Novozhilov's[6] brittle fracture criterion.

The dress fidd in a cracked plate subject to tenson tends to infinity at the crack ftp. If it is
supposed that the rupture occurs when the maximum stress becomes equa to a strength



characterigic vaue, the plate would collgpse subject to an infinitesmd externd load. In redlity, the
externa load necessary to propagate the crack in the plate is finite, as Griffith’'s [2] energy criterion
shows. The paradox between the tensdond and the energetic approaches can be explaned changing
the failure criterion assumed above. The new criterion is based on the hypothes's that fracture in
solids is a discrete process. The destruction of the connection between one pair of atoms is a
fracture quantum. The crack will propagate not when the siress reaches a critical value but when its
integrd dong a quantum of ligament reaches a certain threshold. Novozhilov's [6] brittle fracture
criterion should be written in the following integral form:

do
Os, (x)ax3 s ,d, (17)

0

where s, is a strength characterigtic value for the material without defects and d, is the fracture

guantum, a multiple of the atomic radius.
Substituting the stress field around the vertex of the corner (4) into eg. (17), we can rewrite the
condition for brittle propagation as:

K:(g)2 [1- a(g)](2pd,)"s, (18)

where the rigth part of the inequdity representsthe critica vaue of the stress-intengity factor:

Kic(9)=[1- a(g)](2pdy)""s (19)

Evauating eq. (19) for a crack we obtain dy (it is interesting to emphasize how the quantum do
coincides with Irwin's extimate of the plastic zone diamete).

_2Ke

do—p ?

(20)

Subdtituting dy into eg. (19) we can find the fundamenta equation presented by Sewerynin [5):
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(21)

5. Generalized brittleness number, shape function and failure load
The embrittlement of the structural response produced by the decrease in fracture toughness and/or

by the increase in srength s, and/or in the size b, can be described in a unitary and synthetic manner
viathe variation in the following dimensonless number [4]:

S (g =—eld 22)




Taking into account eg. (21), relation (22) may be reformulated in a generdized form:
s'(9)=(1- a(g))(29*"” (23)

In the opposite cases of crack or corner angle closeto p (flat angle) we respectively obtain:
s=5(g=0)= 1% (240
s,/b

s(g=p)=1 (24b)

Congdering athree point bending specimen and subgtituting eg. (22) into eg. (12) we obtain the
dimensionlessfailure load as afunction of the generaized brittleness number and of the shape
function:

PéRl _ S*(g)

th’s, f'(g.a/b)

(25)

This kind of intensification collapse, when K (g) = K .(g), is dways intermediate between brittle
[K, =K ] ard ductile[s =s ] collapses.
Substituting eg. (24a) into eg. (13), eq. (25) may be evauated for a crack:

Pl S
= 26
th’s, f(a/b) (20)
aswell as subdtituting eg. (23b) into eg. (15), €g. (25) can be evauated for aflat angle:
P&l 1
= 27
th’s, g(a/b) (@7)

For a sructural dement with a crack of a given reative depth, the trangtion between brittle and
ductile collapse arises when the two failure loads (26) and (27) are equd for:

_ f(a/b) 8

>~ glay)

If the angle is different from zero, the crack becomes a re-entrant corner and the trangition arises
when the two falure loads (25) and (27) are equdl for:

< t(gafb)
() _—g(a/b) (29)



The vaue of the brittleness number for which the corresponding generdized fracture curve (25) is
tangentia to the curve of ductile collapse (27) represents its characteristic vaue; for higher vaues of
s the ductile collapse precedes the generdized brittle collapse for any relative corner depth.

Subgtituting egs. (28) and (29) into eg. (23) we obtain the generdized shape function for the re-
entrant corner:

- (-jZa(g)
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The dress intengity-factor (for a crack) and the ultimate tensle strength of the materid of the eement
in object, can be obtained as functions of the failure loads in the cases of angle equa to zero (13)
and flat angle (15). Subgtituting the generalized stress-intesity factor (21) and the shape function (30)
into eg. (12) we can predict the fallure load for a member with a re-entrant corner:

. ~2a(g)
P _®x©
—S =g (32)
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Equations (30) and (31) are true dso for different schemes such as the plate in tenson dready
described, where the failure loads are equad to the failure stresses multiplied by a characterigtic area.

6. Experimental assessment and conclusions

Equations (21), (23) and (30) permit to obtain the generdized stress-intengty factor, the brittleness
number and the shape function for a dtructure with a re-entrant corner. All these generdized
quantities G™ can be written in a unitary manner with reference to their known vaues for an angle
equd to zero, G, or for aflat angle, G”:

. (-)ea(g) (-jZa(g)
Ge(pg) _galofy. a(g))%g - b(a(g,))gfﬂ (32)

where coefficient b is about congtant and equd to one; its maximum divergence from oneis only 6%.
If we put b=1in eg. (32) we can obtain the following smplified equation:

G*(g) %Gdza(g)
G’ &GP o (33

This eguation permits to describe aso the generdized falure load (31) and can be defined as the
fundamental equation to generdize any quantity for a re-entrant corner. The theory is gpplicable to
different schemes and dso with re-entrant corners not subjected only to Mode |; actualy the
generdization (21) isdso true for Mode || and Mode |11 considering the ultimate shearing stress.
The theory presented has been vdidated experimentaly. Three point bending specimens of
PMMA with two different relative depths of the re-entrant corner (a=1,2 cm, b=5 cm, t=5cm, 1=19



cm) and Sx different angles, for a totd of twelve specimens, have been tested. The results of ther
falure loads are reported in Carpinteri’s paper [4]. From equation (31) we can obtain the
corresponding theoretica predictions. The comparison between theoretica and experimental results
isshown in Figure 1. The results show badcdly a rdevant agreement between the theoretica and
the experimenta approaches.
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Figurel
Experimental results and theoretical predictions for the failure loads of a three point bending
specimen with re-entrant corner of relative depth 0.2 and 0.4.
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