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Sommario 
 
Viene presentata un’analisi delle condizioni di inizio e delle caratteristiche del processo di 
crescita di aree di difetto di adesione interlaminare, situate in prossimità della superficie di 
piastre laminate composite soggette a compressione. E’ presa in esame la presenza di due 
zone delaminate ipotizzate disposte in modo coassiale sui lati opposti del laminato. Si studia 
in particolare, l’influenza della dipendenza della resistenza di adesione interlaminare dai 
“modi” di frattura coinvolti sull’inizio e sulla propagazione del danno da delaminazione. 
 
Abstract 
 
An analysis of the initial conditions and of the characteristics of the growth phenomenon of 
zones affected by an interlaminar defect, near the external surfaces of laminated composite 
plates subject to compressive load, is presented in this work. In particular, it is analysed the 
presence of two delaminated zones coaxially positioned on the two opposite sides of the 
laminate. It is focused the influence of the dependence of the interlaminar adhesion strength 
on the fracture modes involved in the appearence and in the growth of the delamination 
damage. 
 
1. Introduction 
 
Fibre reinforced laminate composites are widely used nowadays in load-bearing structures 
due to their light weight, high specific strength and stiffness, good corrosion resistance and 
superb fatigue strength limit. Many successful applications in aerospace, mechanical, naval 
and, now, also in civil engineering rely on the exploitation of these properties as well as 
others. 
However, like metals, these materials lose much more of their structural integrity when 
damaged. In particular, laminated composites often present initial delaminations produced 
from several causes, such us manufacturing imperfections, stress concentrations, object 
impacts, local or global buckling of laminae. 
The presence of interlaminar delaminations may severely reduce the compressive strength of 
structures made from laminate composite materials. The occurrence of delaminations, in fact, 
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may allow laminate free surface to buckle locally (delamination buckling phenomenon) 
thereby creating conditions conducive to delamination growth. Moreover, it is simple to 
individuate that the main reason of delamination is the poor interlaminar toughness, so it is 
deducible the importance to develop and to use tougher adhesives or resins to obtain a better 
connection of the laminate constituting the entire laminate. 
The delamination growth phenomenon depends upon the stress state at the crack tip and it is 
often governed by the mixed-mode stress intensity factor or by the mixed-mode strain energy 
release rate. This consideration is the main reason of several developed and published 
research works where are carried out mode I and mode II interlaminar fracture toughness 
experimental tests or where are developed  mixed-mode delamination growth models for 
composite systems. In this context it is also developed the present work which concerns the 
behaviour of simple one-dimensional plates subject to compressive loads. 
Delamination is assumed to spread from initial interlaminar defects. In particular, the 
attention is focused on locally buckled laminates containing multiple delaminations as 
depicted in Fig. 1. The analysis is developed by using an analytical approach based on the 
Linear Elastic Fracture Mechanics Theory. 

 
Figure 1 - Locally buckled laminated affected by symmetrically located delaminations 

 
In order to accurately predict the growth of delamination when mode I and mode II are 
interacting some fracture criteria have been proposed taking into account the experimental 
evidence. In the present paper, one of these mixed-mode fracture criteria [3] is adopted to 
obtain important information on mixed-mode fracture behaviour of the laminated one-
dimensional plates previously introduced and described. 
Some results are given to show the influence on the delamination buckling and on the growth 
phenomenon of the main geometrical and mechanical characteristics of the structure and to 
evidence the strong role of the fracture modes on the stable or unstable delamination growth. 
 
2. Multiple delamination analysis for a narrow plate 
 
With reference to the previous Figure 1, here we develop the analysis of the damage evolution 
produced by a compressive load on a narrow plate subject to two coaxial delaminated zones. 
The thicknesses of the two external delaminated layers are equal. In particular, the relations 
governing the mechanical behaviour of the plate after the second critical state are analysed. It 
is made the hypothesis that the buckling of the second layer appears before the delamination 
growth initiation of the first buckled layer. The buckling load of the i-th layer, in absence of 
the buckling of the remaining j-th layer is:  
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where E is the Young modulus of the homogeneous, linearly elastic, isotropic material 
constituting the layers. The first buckled layer, obviously, has length (l01) equal or greater 
than the second one (l02). The following non-dimensional parameters represent the central 
transverse displacements (w): 
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The following post-buckling relations are valid for the first layer [2]: 
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Because of the hypothesis that layer 2 buckles before the delamination growth initiation of 
layer 1, and by referencing the compressive load N* as the sum of the N(2) and N(3) relative to 
the layer 2 and to the core 3, as depicted in Figure 2, for the sublaminate composed by the 
layer 2 and the core 3, it is possible to write: 
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In the relations (4a, b) Nc* indicates the value of 
N* capable to buckle the layer 2: 
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To calculate the value of Nc2 which is the load 
which produces the buckling of the second 
layer, we can observe that 21 ll ≥ . 
Moreover, it is possible to write 

( ) *1
2 cLLBc NNN +=  where ( )1

LLBN  represents the 
fraction of Nc2 adsorbed by the buckled layer 1. 
Writing the compatibility equations of the axial 
displacements of the delaminated block as in the 

figure, and individuating by ( )2
cN  the buckling load of the layer 2, we can obtain: 
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By substituing relations (6) and (5) into ( ) *1
2 cLLBc NNN += , it is possible to write: 
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distribution 
 



 4

   ( )21
1

2 , llZ
N
N

c

c =


























+






+

+−






=

2

1

2
2

2

2

1

61

61

t
l

t
l

t
tT

l
l

T
t

;     (7) 

where Nc1 is the buckling load of layer 1, relative to the delamination length l1, and equal to: 
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By introducing the following ratios between the delamination lengths and the defects lengths: 
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we can rewrite equations (7) and (8) as follows:  
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To obtain the force-displacement relations we have to impose the compatibility between the 
axial displacements of the block ends, so by equalizing equations (3b) and (4b) we obtain: 

   ( ) ( ) 2
1

1

2
2

2
1

2
1*

44
ξπξπ

l
l

EBttTEBN
t

tT
N −−+−= ;   (11) 

The total compressive load is ( ) *1 NNN += , and by using the expressions in eqn. (11) and 
(3a): 
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This expression substitutes eqn. (4a) when appears the buckling in the second layer. 
By introducing: 
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it is possible rewrite (12) as: 
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Moreover, by defining the “fictitious single delaminated body (SD)”, obtained from the 
original laminate by suppressing the second delamination, we can write eqn (12) as follows: 
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By imposing, as previously, the compatibility equations, by using eqns. (3a), (4a) and (5), we 
reach: 
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or in the other form: 
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It is also possible to reach, by using the previous relation, the following uL – N expression: 
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In Figures 3 and 4 are depicted the graphical interpretation of the equations (17) and (18). 

Figures 3, 4 - 
Pre and postcritical paths: displacements and potential energy graphical interpretation. 

 
3. Limit equilibrium equations 
 
By remembering the Griffith criterion, the limit equilibrium conditions can be written as: 
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In the previous relations 1∆Φ , 2∆Φ  are the total potential energy increments and Γ is the 
density of the surface adhesion energy. Observing Figure 4, calculating from it the simple 
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expressions of 1∆Φ and  2∆Φ , so their sum ∆Φ , and by using the expressions of X, Y, R, S, 
W, Z previously introduced, we can obtain for equation (19 a): 
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The solution of the last two equations (21), (22) gives us: 
    ( )2111 ,ˆˆ ΨΨ= λλ ;  ( )2122 ,ˆˆ ΨΨ= λλ ;             (23) 

that in the space λ;; 21 ΨΨ represent the limit load surfaces of the two delaminated layers. 
 
4.  Modal interaction in symmetrically located delamination growth 
 
The delamination growth has a constrained path (interlaminar). From this descends the 
observation that the total potential energy is function of the fracture modes involved in the 
phenomenon. Because of the plane deformation characteristic of the phenomenon , the tearing 
fracture mode (Mode III) is practically absent. For the two layers (1 and 2) are valid the 
following: 

( ) ( )
2

2
1 1 2 1 1 01 1 2 3, ,

8I II c

t
G G G N P P P

T
πλ λ λΨ Ψ = + = + + ;               (24) 

  ( ) ( )
2

2
2 1 2 2 2 01 1 2 3

1
, ,

8I II c

t
G G G N Q Q Q

T k
πλ λ λΨ Ψ = + = + + ;               (25) 

where the adopted symbols are 
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The extensional potential energy of the system is: 
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where are adopted the following extensional stiffness parameters: 
Etk =1 ;  Etk =2 ; ( )tTEk 23 −= ;  ( )tTEk −=* ;  ETk = ; 

The unitary energy release on the delamination front are: 
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From the expressions (27) and (28) it is possible to reach the explicit expressions of G1II and 
G2II qualitatively similar to the expressions (24) and (25). Moreover, from the relations (24) 
and (25), by subtracting G1II and G2II, so eqn. (27) and (28), it is possible obtain the 
expressions for G1I and G2I. 
The delamination growth condition, or the limit equilibrium in mixed mode, can be obtained 
from the expression proposed in [3]: 
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where GIC and GIIC are the interlaminar strength for mode I and II, respectively. For layer 1 it 
is possible to write: 
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and from here a relation analogous to the equation (21): 
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where )3,2,1(; =+= iPPP iIIiIi η . The explicit expressions can be obtained in the same way 
as for P1, P2, P3 in eqn. (21). Analogously  for the second layer: 
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6.  Numerical results 
 
When the hypothesis that the buckling of layer 2 precedes, relatively to the initial 
delamination lengths, the delamination growth onset of layer 1, four situations appears 
possible: 
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a) stable path for the delamination of the first layer (for us is the upper layer), while the 
second one (the bottom layer) is in post-buckling conditions; 

b) stable growth for the delamination of the upper layer and no-stable growth for the 
bottom layer, but stable growth in the “Joined Limiting Equilibrium Load Path 
(JLEP)” which is the representation of the joined limit equilibrium path  in the plane 
( 21 ,ΨΨ ) in function of the abscissa s where 21: Ψ=Ψ ks . 

c) no-stable growth for delamination of layer 1, but stable growth in JLEP; 
d) stable growth of delamination in both the layers. 

In particular, in Figure 6, is depicted the first situation. The light grey surface is relative to the 
upper layer, while the dark grey is relative to the bottom one. To draw this picture the 
following values are fixed: 

                       ;01,0
4

;01,0;02,0;35,0

01
2

)1(
0

0101

02 =Γ=====
cN

T
t

B
T
t

l
t

l
l

k
π

α        

 

 
Figure 6 - 
Limit surfaces as functions of dimensionless delamination lengths. 
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