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Abstract  
Slow, stable, rectilinear crack propagation along the interface between a porous, elastic-plastic 
material and a rigid substrate is investigated. The Gurson model with constant porosity, and isotropic 
hardening is considered for the constitutive description of the ductile material. An asymptotic analysis 
of crack-tip fields is performed under steady-state, plane strain conditions. Two distinct solutions 
exist corresponding to predominantly tensile or shear mixed mode. Due to the higher hydrostatic 
stress state, the asymptotic solution reveals that the porosity influences only the stress fields of the 
tensile mode significantly. For high porosities the maximum of the hoop stress deviates from the 
interface line ahead of the crack-tip towards the porous ductile material, causing possible kinking of 
the fracture, so that the toughness of the interface crack may increase significantly. 
 
Sommario  
Nel presente lavoro viene studiato il fenomeno di propagazione stazionaria di una frattura 
rettilinea lungo l’interfaccia tra un materiale duttile poroso ed uno strato rigido. Il materiale 
duttile viene descritto attraverso il modello di Gurson con porosità costante ed incrudimento 
isotropo. Viene condotta un’analisi asintotica in prossimità dell’apice della frattura nell’ipote-
si di stato di sforzo piano, ottenendo due distinte soluzioni che corrispondono a modi misti 
prevalentemente di trazione o di taglio. A causa dell’elevata componente idrostatica (di 
sforzo), la porosità influenza in modo significativo solo il modo di trazione. Inoltre, per valori 
elevati della porosità il massimo della componente circonferenziale di sforzo trasla 
dall’interfaccia verso il materiale duttile poroso, causando una possibile deviazione della 
frattura ed un conseguente incremento della sua tenacità.  
 
1. Introduction  
 
Interfaces between porous ductile metals and brittle materials are common in many advanced 
engineering materials and structural components, like modern structural metallic/ceramic composites, 



  

  

packaging structures for electronic devices and protective coatings, which are obtained by 
compaction and sintering of metal and ceramic powders or multi-layer substrates. This kind of 
interfaces largely occurs in surface coatings of sintered steel components, where a thin hard layer is 
deposited on the metallic surface to increase the protection from wear, high temperatures, chemical 
attack and corrosion. However, a commonly encountered kind of damage in the failure of layered 
composites is represented by slow, stable interfaces crack growth, which may deviates into one of 
the two materials. Therefore, a detailed analysis of debounding process of this kind of interface is 
essential for the determination of the overall strength, toughness and reliability of many advanced 
composite materials. 
 The problem of a stationary and steadily propagating crack in elastic-plastic porous metal has 
been investigated in [1] e [2], by considering a constant porosity version of the Gurson model [3], 
[4]. This constitutive model may accurately describe the behavior of incompletely sintered porous 
metals and particulate-reinforced metal matrix composites. The assumption of constant porosity may 
be reasonable out of the very near crack-tip zone, where micro-inhomogeneities, cavitation and finite 
deformation effects dominate.  
 The objective of the present work is to study the steady-state crack propagation along the 
interface between a porous ductile material, perfectly bounded to a brittle substrate, which is 
modeled as rigid. In particular, an asymptotic analysis of the crack-tip fields is carried out in order to 
obtain detailed informations on the structure of the stress and deformation fields near the tip of the 
interface fracture. The performed analysis follows the approach presented by Radi and Bigoni [5], 
[6], which investigated crack propagation in homogeneous porous ductile metals.  
 The results of the present analysis elucidate the effects of different constitutive parameters on the 
crack-tip fields, as well as the role played by the porosity in the stability of the crack propagation 
and in the occurrence of straight-ahead propagation or kinking.  
  
2. Constitutive  Equations 
 
Reference is made to the Gurson model of elastic-plastic solids containing spherical voids. The 
model is based on a yield surface proposed in [3] of the form ϕ(σ, σm, φ) = 0, where φ is the 
volume fraction of voids, σ is the average macroscopic stress tensor and the variable σm denotes the 
current flow stress of the matrix. By considering a constant porosity, the yield condition is taken in 
the form: 
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where dev σ and tr σ denote the deviatoric part and the trace of σ, respectively. As shown in [5], 
by assuming an elastic-plastic behavior displaying linear and isotropic hardening for the matrix, the 
incremental constitutive equations for the stress velocity of deformation &ε  and the rate of growth of 
the yield surface mσ& , results in: 
 

 ( )
( ) 







 σφ−
α

α−+ν−ν+1= •

•

QQ
Q

I σ
σ

σσ)(ε &&&&
2

2)1()(1
1

E E

E mtr , mσ&  = 
σ

σ

•

•

Q

Q &
 σm, (2.2) 

 



  

  

where E and ν are the elastic Young modulus and Poisson ratio of the matrix material, respectively, 
and αE = Et  / E (0 < αE < 1), where Et is the current longitudinal modulus of the matrix material. The 
MacAuley brackets denote the operator 〈x〉 = Sup{x, 0}, and Q is a second order tensor 
proportional to the gradient of the yield function (2.1), namely: 
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 In the following, it will be assumed that the incremental constitutive eqns (2.2) hold when the 
stress state satisfies the yield condition (2.1) during elastic unloading, whereas an elastic isotropic 
constitutive behavior is considered.  
 
3. Interface Crack  Propagation 
 
The problem of a plane crack propagating at constant velocity c along a rectilinear interface between 
a porous ductile medium and a rigid substrate is considered (Fig. 1). The mechanical behavior of the 
material is described by the rate constitutive laws (2.2). This framework allows to consider elastic 
unloading sectors, which may appear in the proximity of  crack-tip during crack propagation. A 
cylindrical co-ordinate system (r, ϑ, x3) moving with the crack-tip towards the ϑ = 0 direction is 
considered, with the x3-axis along the straight crack front. The steady-state condition yields the 
following time derivative rule, for any scalar function φ: 
 

 
r

= 
cφ&  (φ,ϑ sin ϑ – r φ,r cos ϑ).                                              (3.1) 

 

The kinematic compatibility and quasi-static equilibrium conditions result in: 
 

                                         ε&  =  1
2 (∇v + ∇vT),           div σ = 0. (3.2) 

 

Moreover, the plane strain condition &ε33 = 0 must be considered in addition to (3.2). 
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Fig. 1. Cartesian and cylindrical co-ordinate systems centered at the moving interface crack-
tip.  Elastic and plastic sectors are bounded by angles ϑ1 and ϑ2. 
 
 Compatibility (3.21), equilibrium (3.22) and constitutive incremental eqns (2.2) form a system of 
first order PDEs, which governs the problem of the crack propagation. The solution is searched in a 
separable variable form, by considering single term asymptotic expansions of near crack-tip fields. In 
particular, the stress, velocity, and flow stress fields are assumed in the form: 
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where s denotes the exponent of the fields singularity, ranging between –0.5 and 0, and B is a 
characteristic dimension of the plastic zone. It must be remarked that the crack-tip fields can be 
determined within an amplitude factor. The introduction of the asymptotic stress fields (3.32) into 
equilibrium eqns (3.22), yields the following two scalar ordinary differential eqns: 
 

                Trϑ,ϑ = − (1 + s) Trr + Tϑϑ,      Tϑϑ,ϑ =  − (2 + s) Trϑ.                       (3.4) 
 

  The rates of the fields ε, σ and σm may be derived from (3.3) by using the steady-state  
derivative (3.1): 
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where the components of D, Σ, and Σm are unknown functions of the angular coordinate ϑ. In 
particular, by using the derivative rule (3.1) and relations (3.4), the components of Σ and Σm may be 
written, in the form: 
 

      Σrr = (Trr,ϑ − 2 Trϑ ) sin ϑ − s Trr cos ϑ,      Σ33 = T33,ϑ sin ϑ − s T33 cos ϑ,  
 

 Σϑϑ = − s (Trϑ  sin ϑ + Tϑϑ  cos ϑ), Σrϑ = − s (Trr sin ϑ + Trϑ cos ϑ),              (3.6) 
 

      Σm = Tm,ϑ sin ϑ − s Tm cos ϑ. 
 
Moreover, the compatibility relation (3.21) yields: 
 

 Drr  = s wr,  Dϑϑ  = wϑ,ϑ + wr, Drϑ  = 
2
1 [wr,ϑ − (1 – s) wϑ]. (3.7) 

 

 It is worth noting that, when the asymptotic stress fields (3.32,3) are introduced in (2.1) and in 
(2.3), the yield function f and its gradient Q result to be independent of r, so that they may be written 
in the equivalent form: 
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 A substitution of the asymptotic fields (3.3) and their rates (3.5) into the incremental constitutive 
relationships (2.2) yields the following system of five equations: 
 
 Σ33 − ν (Σϑϑ + Σrr) + λ Q33 = 0,  wϑ,ϑ = − wr − s [Σϑϑ − ν (Σrr + Σ33) + λ Qϑϑ],  
 

 Σrr − ν (Σϑϑ + Σ33) + λ Q rr  + wr = 0,  wr,ϑ =  (1 − s) wϑ  − 2 s [(1 + ν) Σrϑ + λ  Qrϑ], 
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 The constitutive equations (3.9) refer to plastic loading. During elastic unloading or neutral 
loading, the constitutive relations (3.9)  reduce to the incremental equations of linear isotropic 
elasticity, recovered for λ = 0. Eqns (3.9), together with the equilibrium eqns (3.4), results in seven 
homogeneous first order ODEs, for the seven unknowns angular functions wr, wϑ, Trϑ, Trr, Tϑϑ, T33 
and Tm collected in the vector y. It is worth noting that the unknown exponent s may be determined 
as an eigenvalue of the non-linear problem, when a normalization condition for the solution is 
considered. 
 In order to employ a numerical integration procedure, the ODEs (3.9) should be transformed in 
explicit form. In particular, from (3.91) and (3.92) the following system of equations may be derived: 
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2 ) Σ33  =  2 Q33 Qrϑ Σrϑ  − (νh − Q33 Qϑϑ) Σϑϑ.  
 

 
Note that from eqns (3.64,5) Σϑϑ and Σrϑ do not depend on the derivatives of the unknown functions, 
and, thus, the right hand sides of (3.11) also. Therefore, eqns (3.11) may be solved for Σrr and Σ33, 
and then after their substitution into (3.61,2), the derivatives with respect to the angular co-ordinate ϑ 
of the stress functions Trr and T33 may be obtained. Then, the expressions for wr,ϑ and wϑ,ϑ follow 
from the constitutive relations (3.92,4). Finally, the first order ODEs system, which governs the near-
tip stress and velocity fields may be written in the explicit form: 
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 A generic material point P near the crack-tip (Fig. 1) experiences plastic loading, elastic 
unloading and subsequent plastic reloading. The material point, initially ahead of the crack-tip, leaves 
the plastic loading sector at the elastic unloading angle ϑ1 where the plastic multiplier λ vanishes. 
Throughout the elastic unloading the current flow stress σm remains constant and equal to the value 
assumed at the elastic unloading angle ϑ1. Plastic reloading on crack flanks occurs at the angle ϑ2 

where the particle reaches a stress state lying on the yield surface left at unloading.  
 
4. Interface  Boundary Conditions  
 
The rigid interface at ϑ = 0 and the free crack surface at ϑ = π imply the following conditions on the 
velocity and stress functions: 
 



  

  

                            wϑ(0) = wr(0) =  0,              Tϑϑ(π) = Trϑ(π) = 0. (4.1) 
 

 By using the boundary conditions (4.1) and relations (3.6) evaluated at ϑ=0, the constitutive 
relations (3.9) becomes: 
 

−s {Trr(0) − ν [T33(0) + Tϑϑ(0)]} + λ(0) Qrr(0) = 0, 
 

                             −s {T33(0) − ν [Trr(0) + Tϑϑ(0)]} + λ(0) Q33(0) = 0, (4.2) 
 

wϑ,ϑ(0) = s2 { Tϑϑ(0) − ν[Trr(0) + T33(0)]} − s λ(0) Qϑϑ(0), 
 

wr,ϑ(0)  = 2 s2 (1 + ν) Trϑ(0) − 2 s λ(0) Qrϑ(0), 
 

where Q(0) and λ(0) may be evaluated from (3.82) and (3.10):  
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 By taking the difference between eqns (4.21) and (4.22) it may be found that: 
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Since the first term in (4.5) is always positive, it follows that T33(0) = Trr(0). Moreover, the normali-
zation condition Tm(0) = 1, is adopted to avoid the trivial solution.  
 In order to solve the system of ODEs (3.12) the Runge-Kutta procedure is used. This approach 
requires the knowledge of y(0). However, the boundary conditions (4.1) do not specify the stress 
components at ϑ = 0, and thus, their values must be preliminarily obtained from the governing system 
of equations. In particular, Trϑ(0) may be obtained from the yield condition (3.81) evaluated at ϑ = 0: 
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which admits two distinct, and opposite in sign, roots for Trϑ(0), having opposite sign. Finally, the 
position p = Trr(0)/Tϑϑ(0) is made and the value of Tϑϑ(0) may be found as an implicit function of p 
by solving the non linear algebraic equation resulting from the constitutive relation (4.21): 
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where ξ = (p + 0.5) Tϑϑ(0). Equation (4.7) defines the value of ξ, and thus of Tϑϑ(0), as an implicit 
function of p. Note that at least two opposite solution for ξ are possible. The values of s and p are 



  

  

numerically calculated by the integration procedure. This integration is performed by assuming 
arbitrary initial values for p and s. On the basis of a check on the values of Tϑϑ(π) and Trϑ(π), the 
guessed values of p and s are reassigned and the process is iterated using a modified Powell hybrid 
method, until Tϑϑ(π) and Trϑ(π) are found to be sufficiently close to zero as required by (4.1). 
Finally, all results are normalised through the condition Tm(ϑ1) = 1. 
 
5. Results  and  Conclusions  
 
For the Poisson ratio ν=0.3 and the linear hardening parameter αG=0.01, two distinct solutions have 
been found with slightly different values of the stress singularity and very different mixities of the local 
crack-tip fields, corresponding to predominantly tensile or shear stress field. This is consistent with 
the results obtained in [7] and [8] for full densities of the ductile material. The same results may be 
recovered by the present analysis for φ = 0.  
 The effects of porosity on the stress singularity (s), elastic unloading (ϑ1) and plastic reloading 
(ϑ2) angles are outlined in Fig. 2 for both tensile and shear solutions. In particular, from Fig. 2a it 
may be noted that the strength of the stress singularity, namely the absolute value of s, for the tensile 
solution attains a maximum at about the value φ=0.06 and then decreases at higher values of 
porosity, whereas for the shear solution the singularity decreases almost linearly as the porosity 
increases. From Fig. 2b it may be observed that the size of the elastic unloading sectors in the ductile 
material in proximity of the crack-tip enlarges as the porosity increases, so that the plastic 
deformation tends to concentrate ahead of the crack tip. 
 The angular variations of the stress and current flow stress asymptotic fields, defined by the 
component of the functions T and Tm are plotted in Fig. 3 for the tensile mode and in Fig. 4 for the 
shear mode. Two different values of porosity, namely φ=0.01 and φ=0.1, have been considered. The 
results show that the tensile stress field ahead of the crack-tip in the ductile material is characterized 
by large stress triaxiality, whereas the shear stress field displays low mean stress. Therefore, due to 
the higher hydrostatic stress state, the effect of the porosity of the ductile material influences mostly 
the stress fields of the tensile mode. It must be noted that for the tensile solution, as the porosity 
increase, the location of the maximum hoop stress Tϑϑ deviates from the interface line ahead of the 
crack-tip towards the porous ductile material, since the maximum is attained where the shear stress 
Trϑ vanishes, as it follows from (3.42). This occurrence may cause possible kinking of the fracture 
trajectory, so that the fracture toughness of the interface crack may significantly increase. 
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Fig. 2. Strength of the stress singularity (s), elastic unloading (ϑ1) and plastic reloading (ϑ2) 
angles as functions of porosity for tensile (bold line) and shear (solid line) solutions, for ν=0.3 
and α

E
=0.01. 
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Fig. 3. Angular variations of the stress fields near crack-tip under tensile mode, for ν=0.3 and 
α

E
=0.01 and two different values of the porosity φ. 
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 Fig. 4. Angular variations of the stress fields near crack-tip under shear mode, for ν=0.3 and 
α

E
=0.01 and two different values of the porosity φ. 
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