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Abstract

Slow, dable, rectilinear crack propagation dong the interface between a porous, eadtic-plagtic
materid and arigid subgirate is investigated. The Gurson model with constant porosity, and isotropic
hardening is conddered for the condtitutive description of the ductile materid. An asymptotic andyss
of crack-tip fields is performed under steady-<ate, plane strain conditions. Two distinct solutions
exig corresponding to predominantly tengle or shear mixed mode. Due to the higher hydrogtatic
dress date, the asymptotic solution reveds that the porosty influences only the stress fidds of the
tendle mode sgnificantly. For high porodties the maximum of the hoop stress deviates from the
interface line ahead of the crack-tip towards the porous ductile materid, causing possible kinking of
the fracture, so that the toughness of the interface crack may increase sgnificantly.

Sommario

Nel presente lavoro viene studiato il fenomeno di propagazione stazionaria di una frattura
rettilinea lungo I’ interfaccia tra un materiale duttile poroso ed uno strato rigido. Il materiale
duttile viene descritto attraverso il modello di Gurson con porosita costante ed incrudimento
isotropo. Viene condotta un’analisi asintotica in prossimita dell’ apice della frattura nell’ ipote-
S di stato di sforzo piano, ottenendo due distinte soluzioni che corrispondono a modi misti
prevalentemente di trazione o di taglio. A causa dell’elevata componente idrostatica (di
sforzo), la porosita influenza in modo significativo solo il modo di trazione. Inoltre, per valori
elevati della porosita il massmo della componente circonferenziale di sforzo trada
dall’interfaccia verso il materiale duttile poroso, causando una possibile deviazione della
frattura ed un conseguente incremento della sua tenacita.

1. Introduction

Interfaces between porous ductile metals and brittle materids are common in many advanced
engineering materias and structural components, like modern structura metallic/ceramic compostes,



packaging sructures for eectronic devices and protective coatings, which are obtained by
compaction and sintering of metd and ceramic powders or multi-layer subgtrates. This kind of
interfaces largely occurs in surface coatings of sntered steel components, where a thin herd layer is
deposited on the metdlic surface to increase the protection from wear, high temperatures, chemica
attack and corrosion. However, acommonly encountered kind of damage in the failure of layered
composites is represented by dow, stable interfaces crack growth, which may deviates into one of
the two materids. Therefore, a detailed analyss of debounding process of this kind of interface is
essentid for the determination of the overdl strength, toughness and reliability of many advanced
compodite materias.

The problem of a sationary and steadily propagating crack in dastic-plastic porous metd has
been investigated in [1] e [2], by considering a constant porosity verson of the Gurson mode [3],
[4]. This condtitutive model may accurately describe the behavior of incompletely sintered porous
metals and particulate-reinforced metad matrix composites. The assumption of congtant porosity may
be reasonable out of the very near crack-tip zone, where micro-inhomogeneities, cavitation and finite
deformation effects dominate.

The objective of the present work is to study the steady-state crack propagation aong the
interface between a porous ductile materid, perfectly bounded to a brittle substrate, which is
modeled as rigid. In particular, an asymptotic analyss of the crack-tip fieldsis carried out in order to
obtain detailed informations on the Structure of the stress and deformation fields near the tip of the
interface fracture. The performed anaysis follows the approach presented by Radi and Bigoni [5],
[6], which investigated crack propagation in homogeneous porous ductile metas.

The results of the present analyss eucidate the effects of different condtitutive parameters on the
crack-tip fieds, as well as the role played by the porosty in the stability of the crack propageation
and in the occurrence of straight-ahead propagation or kinking.

2. Congtitutive Equations

Reference is made to the Gurson modd of dadtic-plagtic solids containing sphericd voids. The
model is based o a yield surface proposed in [3] of theform j (s, s,,, f) = 0, where f isthe
volume fraction of voids, s isthe average macroscopic siress tensor and the variable s, denotes the
current flow dress of the matrix. By considering a constant porosity, the yield condition is taken in
the form:
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f(s,s,)= —— +2f coshg—;j (1+f%) =0, (2.1)

where dev s and tr s denote the deviatoric part and the trace of s, respectivey. Asshownin [5],
by assuming an dadtic-plagtic behavior displaying linear and isotropic hardening for the matrix, the
incrementa condtitutive equations for the stress velocity of deformation e and the rate of growth of
theyield surface $ ,,, resultsin:
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where E and n are the dastic Y oung modulus and Poisson ratio of the matrix materid, respectively,
and ag = E/E (0 <ag < 1), whereE isthe current longitudina modulus of the metrix materid. The
MacAuley brackets denote the operator &f = Sup{x, 0}, and Q is a second order tensor

proportiond to the gradient of the yield function (2.1), namely:
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In the following, it will be assumed that the incremental condtitutive egns (2.2) hold when the
dress date sdtisfies the yied condition (2.1) during eastic unloading, whereas an eadtic isotropic
congtitutive behavior is considered.

3. Interface Crack Propagation

The problem of a plane crack propagating at constant velocity ¢ dong arectilinear interface between
a porous ductile medium and arigid subdtrate is consdered (Fig. 1). The mechanicd behavior of the
materid is described by the rate condtitutive laws (2.2). This framework alows to consder eastic
unloading sectors, which may gppear in the proximity of crack-tip during crack propagation. A
cylindrica co-ordinate system (r, J, x) moving with the crack-tip towards the J = O direction is
considered, with the %-axis dong the straight crack front. The steedy-sate condition yields the
following time derivative rule, for any scaar function f :

f=S(f,dnJ —rf, cosd). (3.1)
r

The kinematic compatibility and quas-gtatic equilibrium conditions result in:
e = $(Rv+ v, divs =0. (3.2)
Moreover, the plane strain condition €33 = 0 must be considered in addition to (3.2).
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Fig. 1. Cartesian and cylindrical co-ordinate systems centered at the moving interface crack-
tip. Elastic and plastic sectors are bounded by angles J; and J..

Compatibility (3.2;), equilibrium (3.2;) and condtitutive incrementd egns (2.2) form a system of
first order PDEs, which governs the problem of the crack propagation. The solution is seerched in a
separable variable form, by consdering Sngle term asymptotic expansons of near crack-tip fidds. In
particular, the stress, velocity, and flow stress fields are assumed in the form:
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where s denotes the exponent of the fieds singularity, ranging between —0.5 and O, and B is a
characteristic dimengion of the plastic zore. It must be remarked that the crack-tip fieds can be
determined within an amplitude factor. The introduction of the asymptotic stress fidds (3.3;) into
equilibrium egns (3.2,), yidds the following two scalar ordinary differential egns:

Tui=- (1+9 Ty + Ty, Tyuas=-(2+9 Ty (3.4)

Therates of thefiddse, s and s,,, may be derived from (3.3) by using the steady-state
derivative (3.1):
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where the components of D, S, and S, are unknown functions of the angular coordinate J. In
particuar, by using the derivative rule (3.1) and relations (3.4), the components of S and S, may be
written, in the form:

S{r:(Trr’J - ZT,J)SinJ - sT,cosd, 833:T33’J sinJ - sTx3c0SJ,
SJJ =- S(TrJ sinJ +TJJ COSJ); S’J =- S(TrrSin‘] +TFJ COSJ), (36)

S, = Tms SNJ - sTycosd.
Moreover, the compatibility relation (3.2,) yidds

Dy =sw, Dy; =wy 5 + W, Dy = %[Wr,.] - (1-9) wyl. (3.7)

It is worth noting that, when the asymptotic stress fields (3.3;,3) are introduced in (2.1) and in
(2.3), theyidd function f and its gradient Q result to be independent of r, so that they may be written
in the equivaent form:
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A subdtitution of the asymptatic fields (3.3) and ther rates (3.5) into the incrementa condtitutive
relationships (2.2) yidds the following system of five equations:

Q=

Ssz- N(Sy; +Si) +1 Qi =0, Wy =- W- S[Sy- n(Se+ Szs) +1 Quyl,
Si- N(Syy+S)+1 Qn +W, =0, W= (1-9w; - 2s[(1+n)Sy+I Qul,
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The conditutive equations (3.9) refer to plagtic loading. During dadtic unloading or neutra
loading, the condtitutive relations (3.9) reduce to the incremental equations of linear isotropic
eladticity, recovered for | = 0. Egns (3.9), together with the equilibrium egns (3.4), resultsin seven
homogeneous firgt order ODEs, for the seven unknowns angular functions w, Wj, Ty, Ty, T, Ta3
and T,,, collected in the vector y. It is worth noting thet the unknown exponent s may be determined
as an eigenvdue of the non-linear problem, when a normdization condition for the solution is
considered.

In order to employ a numerica integration procedure, the ODEs (3.9) should be transformed in
explicit form. In particular, from (3.9;) and (3.9;) the following system of equations may be derived:

(h+ Q%) Sy - (Nh- QrQx) Sz = - Wh+(nh- QrQyy) Sy - 2QrQu S,
(3.11)

(Nh- QuQs) Sr- (h+ Q%) S5 = 2QQu Sy - (Nh- Qs Qy3) Sy

Note that from egns (3.645) S;; ahd S;; do not depend on the derivatives of the unknown functions,
and, thus, the right hand sides of (3.11) dso. Therefore, egns (3.11) may be solved for S, and Sgs,
and then after their subgtitution into (3.6, ), the derivatives with respect to the angular co-ordinate J
of the stress functions T, and Tz may be obtained. Then, the expressions for w ; and w; ;5 follow
from the condiitutive relations (3.9, 4). Findly, the first order ODES system, which governs the near-
tip stress and velocity fields may be written in the explicit form:

y.(J):}fp(J’Y(J)’S) if f(T,T,)=0 and Q.s>(j, (3.12)
ife(J,y(3),s) if f(T,T,)<0 or f(T,T,)=0and Q. .sS£0,

A generic materid point P near the crack-tip (Fig. 1) experiences plagtic loading, eastic
unloading and subsequent plagtic reloading. The materid point, initialy ahead of the crack-tip, leaves
the pladtic loading sector a the dagtic unloading angle J, where the plastic multiplier | vanishes.
Throughout the eastic unloading the current flow siress s ,, remains constant and equal to the value
assumed a the dagtic unloading angle J ;. Plastic rdloading on crack flanks occurs at the angle J,
where the particle reaches a stress state lying on the yied surface left a unloading.

4. Interface Boundary Conditions

Therigid interface @ J = 0 and the free crack surface at J = p imply the following conditions on the
velocity and gress functions:



w;(0) =w(0) = 0, Ty:(p) = Tu(p) = 0. 4.0

By using the boundary conditions (4.1) and relations (3.6) evauated at J =0, the condtitutive
relations (3.9) becomes:

-${Tw(0)- n[Tx(0) + T55(0)]} +1(0) Qx(0) =0,
-${Ta5(0)- n[Tx(0) + T55(O)]} +1(0) Qas(0) =, (4.2)
W;,5(0) = & { T3(0) - n[Tw(0) + Ta5(0)]} - s! (0) Qus(0),
W;3(0) =25 (1+n) Tyu(0) - 251 (0) Qu(0),
where Q(0) and | (0) may be evduated from (3.8;) and (3.10):
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By taking the difference between egns (4.2;) and (4.2,) it may be found that:
€310 < Y T0). TuO =
m s n)H [T+(0)- T=s(0)] =0. (4.5)

Since the first term in (4.5) is dways poditive, it follows that Ts3(0) = T,,(0). Moreover, the normali-
zaion condition T(0) = 1, is adopted to avoid the trivid solution.

In order to solve the system of ODES (3.12) the Runge-Kutta procedure is used. This approach
requires the knowledge of y(0). However, the boundary conditions (4.1) do not specify the stress
components at J = 0, and thus, their values must be preiminarily obtained from the governing system
of equations. In particular, T,;(0) may be obtained from the yield condition (3.8,) evaluated at J = O:

T.(0)?= %{1+f2 - 2f cosh [%TJJ(O) + T(0)] - [T13(0) - T(0)]%, (4.6)

which admits two digtinct, and opposite in sign, roots for T;;(0), having opposite sign. Findly, the
positionp = T.(0)/T,;(0) is made and the vaue of T;;(0) may be found as an implicit function of p
by solving the non linear agebraic equation resulting from the condtitutive relation (4.2,):
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+p-1=0, (4.7

where x = (p + 0.5) T;;(0). Equation (4.7) defines the value of x, and thus of T;;(0), as an implicit
function of p. Note that at least two opposite solution for x are possible. The vdues of sand p are



numericaly caculated by the integration procedure. This integration is performed by assuming
arbitrary initid vaues for p and s. On the basis of a check on the vaues of T;(p) and Ty;(p), the
guessed values of p and s are reassgned and the process is iterated using a modified Powell hybrid
method, until To;(p) and T;(p) are found to be sufficiently close to zero as required by (4.1).
Finaly, al results are normalised through the condition T(J ;) = 1.

5. Resaults and Conclusions

For the Poisson ratio n=0.3 and the linear hardening parameter a =0.01, two distinct solutions have
been found with dightly different vaues of the stress Sngularity and very different mixities of thelocd
crack-tip fields, corresponding to predominantly tensle or shear dress fidd. This is conssent with
the results obtained in [7] and [8] for full dengties of the ductile materid. The same results may be
recovered by the present analyssfor f = 0.

The effects of porosty on the stress singularity (S), dastic unloading (J ;) and plagtic reloading
(J,) angles are outlined in Fig. 2 for both tensle and shear solutions. In particular, from Fig. 2a it
may be noted that the strength of the stress singularity, namely the absolute value of s, for the tensile
solution attains a maximum a about the vaue f=0.06 and then decreases a higher values of
porosity, wheress for the shear solution the singularity decreases dmogt linearly as the porosty
increases. From Fig. 2b it may be observed that the sSize of the eastic unloading sectors in the ductile
materia in proximity of the crack-tip enlarges as the porosty incresses, so that the plastic
deformation tends to concentrate ahead of the crack tip.

The angular variaions of the dress and current flow stress asymptotic fields, defined by the
component of the functions T and T, are plotted in Fig. 3 for the tensle mode and in Fig. 4 for the
shear mode. Two different values of porosity, namdy f =0.01 and f =0.1, have been considered. The
results show that the tendle siress field ahead of the crack-tip in the ductile materid is characterized
by large dtress triaxidity, whereas the shear dtress field digplays low mean dress. Therefore, due to
the higher hydrostatic stress State, the effect of the porogty of the ductile materia influences mostly
the dress fidds of the tendle mode. It must be noted that for the tensile solution, as the porosty
incresse, the location of the maximum hoop siress T,; deviates from the interface line ahead of the
crack-tip towards the porous ductile materia, since the maximum is atained where the shear stress
T,; vanishes, as it follows from (3.4,). This occurrence may cause possible kinking of the fracture
trgjectory, S0 that the fracture toughness of the interface crack may significantly increase.
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Fig. 2. Strength of the stress singularity (s), elastic unloading (J1) and plastic reloading (J2)
angles as functions of porosity for tensile (bold line) and shear (solid line) solutions, for n=0.3

and a.= 0.01.
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Fig. 3. Angular variations of the stress fields near crack-tip under tensile mode, for n=0.3 and
a_=0.01 and two different values of the porosity f .
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Fig. 4. Angular variations of the stress fields near crack-tip under shear mode, for n=0.3 and
a_=0.01 and two different values of the porosity f .
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