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Abstract

In the context of the Continuum Damage Mechanics, di�erent types of non-

local formulations are discussed, i.e., non local integral models, and gradient

models both of explicit and implicit type. A unifying approach is described,

based on the introduction of the nonlocality constraint into the energy ex-

pression through a lagrangian multiplier. Therefore, the solving equations of

the problems follow as stationarity conditions of the lagrangian functional.

Finally, some numerical results for a 2D example are presented.

Sommario

Vengono discussi alcuni modelli non locali di tipo integrale, gradiente es-

plicito ed implicito nell'ambito della Meccanica del Danneggiamento. Si

mostra che le equazioni risolventi possono anche essere ricavate dal cal-

colo delle condizioni di stazionariet�a del funzionale lagrangiano ottenuto in-

troducendo, tramite un moltiplicatore di Lagrange, il vincolo di nonlocalit�a

nell'espressione dell'energia. In�ne, si riportano alcuni risultati numerici

relativi ad un esempio 2D.

1. Introduction

Quasi-brittle materials generally exhibit a load-carrying capacity which de-

creases for increasing values of the strain after a (strain) threshold has been

overcome. The equilibrium is governed by partial di�erential equations,

which, in case of softening behavior, lose ellipticity in quasi static analy-

sis or hyperbolicity in dynamics [1]. Correspondingly, the tendency of the

calculated strain �eld to localize into a volume with zero width measure can

be observed, so that the bulk deformation energy dissipated into the process

zone tends to vanish. As a numerical counterpart, the response of standard

�nite elements models pathologically depends on the size and the orientation

of the adopted mesh: di�erent meshes lead to di�erent solutions.
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What is lacking, is the presence of a �nite bound on the dissipation of

energy, and this can be obtained by assuming at the constitutive level some

internal lengths characteristic of the material [2]. For instance, thus justify-

ing the evident recent interest in nonlocal models, the existence of a �nite

characteristic length is guaranteed if the principle of local action is abandoned

[3].

However, some mechanical and numerical aspects of the nonlocal formu-

lations should be clari�ed. For example, the choice regarding which of the

involved variables should be written as non local is really a crucial point. No

agreement has been reached in literature about the mechanical consistency

of averaging a state variable as the strain, rather than some internal variable,

like the damage or the equivalent strain. [2, 4].

In the context of the Damage Continuum Mechanics, here, di�erent types

of nonlocal formulations will be considered, i.e., non local integral models,

and gradient models both of explicit and implicit type. In Sections 4 and 5, a

unifying approach will be described, based on the introduction of the nonlo-

cality constraint into the energy expression through a lagrangian multiplier.

The solving equations of the problems follow as stationarity conditions of the

lagrangian formulation.

2. Isotropic damage: basic relationships

The constitutive relation for a damaging material can be written in the usual

form

� = (1�D) E " ; (1)

where � and " represent, respectively, the stress and the in�nitesimal strain

tensor, E is the constitutive tensor of the sound material, D is the damage

parameter, more precisely scalar in the case of isotropic damage, and such

that D = 0 when the material is sound, whereas D = 1 for a complete state

of damage. According to [2] and [4], it is assumed that the damage depends

on a suitable scalar function of the strain tensor, the equivalent strain "eq,

D = D("eq). For instance, in [5]

"eq(") =

vuut 3X
i=1

h"ii2; (2)

with "i, i = 1; 2; 3, the principal strains and h�i =
j�j+�
2
. Alternatively, the

following form of the equivalent strain can be considered [6]

"eq(") =
r � 1

2r(1� 2�)
I1 +

1

2r

s
(r � 1)2

(1� 2�)2
I21 +

2r

(1 + �)2
J2 ; (3)

where � is the Poisson coeÆcient, and the strain tensor invariants I1 and J2
are de�ned as

I1 = tr(") = "1 + "2 + "3 (4a)

J2 = 3tr(" � ")� tr2(") = ("1 � "2)
2 + ("2 � "3)

2 + ("3 � "1)
2 ; (4b)
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and r = �fc=�ft denotes the ratio between the compressive and the tensile

strengths, so that if r tends to in�nite no failure due to compression can occur.

Because the evolution of the damage depends on the deformation history,

a threshold parameter � has to be introduced to indicate the most severe

deformation the material has experienced, or, in other words, the threshold

of the equivalent strain over which the damage increments. Following [2, 6],

the damage D and � are related by

D(�) =

(
0 if � < �0

1� �0

�
[1� � + � exp(��(�� �0))] otherwise

; (5)

where � and � are parameters to be determined experimentally, and �0 is an

initial damage threshold. The resulting stress strain relation for a homoge-

neous (local) material in the one-dimensional case is described by Figure 1.

−0.15 −0.1 −0.05 0 0.05
−400

−350

−300

−250

−200

−150

−100

−50

0

50 σ 

ε 

Figure 1: One-dimensional stress strain relation (E=18000 N/mm2, r = 10).

3. Nonlocal formulations

It has been showed that it is not necessary to consider as nonlocal all the

involved state variables in order to regularize the solution [2]. Because the

softening behavior is a consequence of the damage phenomena, it seems rea-

sonable, other than suÆcient, to take into account the nonlocal form of the

variable which governs the damage itself, i.e., in the present contribution,

the equivalent strain "eq. Practically, from the local variable "eq the corre-

spondent non local variable

�"eq = L("eq); (6)

is derived, where the operator L is the averaging operator

L("eq)(x) =

Z
V (x)

 (x� s) "eq(s) ds; (7)

 being a suitable weight function de�ned over the whole body with volume

V (x). For instance, 	 can be taken as the Gauss function e�k2r2=l2 , where r

denotes the distance between the point at hand and the surrounding points, k

is a constant, and l introduces an interaction length. Alternatively, provided

the Taylor expansion of "eq exists, L("eq) can be approximated through a

gradient in the explicit form
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L("eq)(x) = "eq (x) + cr2"eq (x) on 
 (8a)

r"eq � n = 0 on @
; (8b)

where c is a positive scalar, which in
uences the width of the computed

process volume. In the two-dimensional case, and for the choice k = 2,

the gradient constant c and the parameter of the gaussian l are related by

c = l2=16. As shown above, a boundary condition has to be imposed in case

of gradient formulations for providing a solution to the di�erential equation

(8.a). Here, the widely used boundary condition (8.b) has been adopted,

where n and r are, respectively, the normal to the boundary of the body

and the gradient operator, and r2, multiplied by the constant c, represents

the laplacian, which can be written

r
2"eq = div(r"eq): (9)

It should be underlined, that the choice (8.b) has been not mechanically

motivated. It partially recalls [7], where, for elasto-plastic non local material,

r"
P
�n = 0 on the boundary of the process zone, "P being the plastic strain

component. However, the problem of the de�nition of suitable boundary

conditions arises also in the case of nonlocal integral models, because of the

modi�cation of the averaging operator at the boundary [8].

Gradient formulations in the implicit form

�"eq(x) = "eq(x) + cr2�"eq(x) on 
; (10a)

r�"eq � n = 0 on @
; (10b)

have been proposed as alternative to the explicit form (8), also[4, 6]. It is

worth noting, that the advantage of using implicit formulation with respect

to the explicit one, lies in the fact that, in this case, the laplacian operator

applies to �"eq, which is treated as an independent unknown, and not to

the local �eld, which can be not smooth. Let us also observe that, from the

numerical point of view, the two cases of integral and gradient models should

be distinguished. In the latter case, indeed, the necessity of calculating the

second derivative of the local �eld can be alleviated by application of the

Gauss-Green formula, but the price to pay is that the additional boundary

condition (8.b), or (10.b), has to be speci�ed.

In [9], a comparison between explicit and implicit type gradient formula-

tions (for plasticity) reveals that the amount of spurious stress oscillations is

reduced in the latter case with respect to the former one. For the sake of an

example of implicit gradient model, let us consider that formulated in [4, 6]

for quasi-brittle damaging materials, where the displacement and the aver-

aged equivalent strain �elds are unknown. Let us consider the case of a body

with volume 
, subject to body forces b, to tractions p on the portion �p

of the boundary �, with prescribed displacements �u on �u. The incremental

equilibrium problem
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div _� + _b =0 on 
; (11a)

_� � n = _p on �p; (11b)

_u =�_u on �u; (11c)

�"eq(x) ="eq(x) + cr2�"eq(x) on 
; (11d)

has been solved by considering the weak form of each equation in (11)

(weighted residual method) through standard �nite element method, and ap-

plying the Gauss Green formula to the term with the laplacian. The damage

parameter D, which appears in the de�nition of the stress (1), is considered

to be a function of the averaged equivalent strain �"eq, D = D(�"eq). The

loading function f = �"eq � � governs the damage evolution according to the

Kuhn Tucker conditions

_� � 0; f � 0; f _� = 0 : (12)

4. A Lagrangian formulation for an implicit gradient model

In alternative to the above presented formulation, it is possible to introduce

the constraint of nonlocality, in its most general expression (6), by means of

a lagrangian multiplier into the principle of virtual power, which does not

require the existence of a potential energy and can be written also for non-

conservative problems (for instance, for the explicit gradient case, in [10], a

kinematic constraint is incorporated in this way in the virtual power func-

tional). Whenever the problem is selfadjoint, the latter approach is equivalent

to minimize the total potential energy. In the following, we will focus our

attention on the minimum of a functional, which is analogous to the potential

energy written in terms of velocity, subject to the constraint of non locality

(6). It can be showed that this procedure is general and contains as particular

cases some of the formulations previously proposed in the literature.

From here on, for simplicity, the overwritten dots indicating incremental

quantities will be omitted and zero body forces will be considered. The

problem of �nding the minimum points of the functional

F(u; �"eq) =

Z



1

2
" : (1�D(�"eq))E : " d
�

Z
�

pu dS ; (13)

subject to (gradient relation of implicit type)

G(u; �"eq) = �"eq � cr2�"eq � "eq = 0 ; (14)

is studied. In analogy with [7], the boundary condition

r�"eq � n = 0 on @
 (15)

is imposed a priori. The above problem is equivalent to that of �nding the

saddle points of

L(u; �"eq; �) = F(u; �"eq) +

Z



� (�"eq � cr2�"eq � "eq) d
; (16)
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where � denotes the lagrangian multiplier. If we remember (9), the term

on which the laplacian operator applies to the averaged equivalent strain

can be transformed by application of Gauss-Green formula. Therefore, after

imposition of the boundary condition (15), the functional (16) can be written

as

L(u; �"eq; �) =

Z



1

2
" : (1�D(�"eq))E : " d
 +Z




[�(�"eq � "eq) + cr� � r�"eq] d
�

Z
�

p � u dS: (17)

The boundary condition (14) is weakened toZ
@


�(r�"eq � n) dS = 0; (18)

which is obviously satis�ed if equation (15) is assumed, and this probably

is the actual justi�cation of this choice. It is worth remarking, that the

condition (15) seems to be more reasonable when the non local �eld is derived

from an internal variable, like the equivalent strain "eq, and not from a state

variable, like, for instance, the strain; in the latter case, in fact, the 
ux of

the strain �eld across the boundary can not be arbitrarily set equal to zero.

As it will be showed in the following section, such a problem does not arise

if the integral formulation is considered, because no higher order derivatives

are implied.

Now, discretization of the continuous unknown �elds (u, �"eq, �) is per-

formed by setting

u(x) = N(x)u
~
; �"eq(x) = ~N(x)�"eq

e

�(x) = ~N(x)�
~

"(x) = B(x)u
~
; r�"eq(x) = ~B(x)�"eq

e

r�(x) = ~B(x)�
~
; (19)

where the same interpolation functions are chosen for approximation of �"eq
and of the lagrangian multiplier �.

Requiring the stationarity conditions of the discretized functional leads

to a non linear system of equations, to be solved through an iterative pro-

cess. The same set of equations can be obtained starting from the virtual

work principle and assuming the same basis function for virtual and real

displacements.

We may point out, that three unknown �elds have been considered, be-

cause the lagrangian multiplier is an additional unknown, while, in the im-

plicit gradient formulation [4], two unknown �elds are computed. On the

other hand, here, the tangent sti�ness matrix is symmetric and not asym-

metric at variance with the one in [4].

5. Lagrangian formulation for an integral model

Let us consider the stationarity of the following functional

L(u; �"eq; �) = F(u; �"eq) +

Z



� (�"eq �

Z
V

 (x� s)"eq ds) d
;
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where F(�; �) is de�ned as in (7). Again, we reduce ourselves to calculate the

stationarity condition of the corresponding discretized form.

let us observe, that a Penalty method could be employed at the place of

the Lagrangian method. In this case, the saddle points of the functional

L(u; �"eq; �) = F(u; �"eq) +



2

Z



(�"eq �

Z
V

 (x� s)"eq ds)
2
d
: (20)

have to be found, where 
 is a the penalty parameter, and no additional

unknowns are introduced into the variational formulation.

6. Numerical examples

As an example, the concrete specimen studied by Hassanzadeh [11] is ana-
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Figure 2: 2.1) Concrete specimen: geometrical features 2.2) Contour plot of

�"eq for P = 58 N
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Figure 3: Total load versus vertical displacement of the point A.

lyzed through the implicit gradient model [4], where the gradient parameter c

has been set equal to 1 mm2. However, in this numerical example, a uniform

distribution of traction loads is considered applied at the top of the speci-

men, whereas the nodes at the bottom are �xed. The loading procedure has
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been controlled by means of an arc length technique. The equivalent strain

de�nition (4), and the damage relation (5) have been used, where the ratio

between compressive and tensile strength r = 10, the parameters � = 0:96,

� = 350, and the damage threshold �0 = 10�4 have been assumed. The ma-

terial has a Young modulus E= 32900N/mm2, and a Poisson ratio � = 0:2.

A plane stress state has been considered.

Because of the symmetry of the specimen, only one half of it has been

studied. The mesh of Figure 2.2 has been adopted, constituted by 74 eight-

noded serendipity elements for the displacement �eld and four-noded bilinear

elements for the averaged equivalent strain �eld. Moreover, both �elds have

been integrated with a four-point integration scheme.

The damage zone, strictly related to the value of the averaged equivalent

strain, tends to localize at the notch (see Figure 2). The resultant total load

has been plotted (Figure 3) versus the vertical displacement of the point A

placed on the symmetry axis (see Figure 2.1).
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