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Sommario

 

Viene presentata una soluzione analitica dei campi asintotici di tensione e deformazione in prossimità
dell’apice di una frattura che si propaga rapidamente in un materiale poroelastico saturo, in condizioni di
Modo I. Si assume che il comportamento del materiale sia descritto dalla teoria di Biot della poroelasticità
in presenza di effetti dinamici. L’approccio seguito prevede la trasformazione delle equazioni del moto,
espresse in termini di potenziali di spostamento, in un sistema disaccoppiato del secondo ordine, di cui
viene fornita una soluzione a variabili separate, valida localmente in prossimità dell’apice. I risultati
ottenuti mostrano che la pressione del fluido in prossimità dell’apice presenta la stessa singolarità della
tensione nel materiale della fase solida. A differenza del caso quasistatico in cui l’apice della frattura è in
condizioni drenate, per propagazione dinamica della frattura il fluido interstiziale non ha il tempo
necessario per defluire lontano dall’apice.

 

 

 

 

Abstract

 

A closed-form asymptotic solution is provided for the stress, pore pressure and displacement fields near
the tip of a Mode I crack, dynamically running in elastic fluid-saturated porous solids. The Biot theory of



poroelasticity with inertia forces is assumed to govern the motion of the medium. The equations of
motion, in terms of displacement potentials, has been reduced into a second order uncoupled system and
solved under a scheme of separated variables. The obtained asymptotic solution reveals the pore pressure
near the crack-tip displays the same square root singularity as the stress in the solid skeleton. Differently
from the quasistatic case, where the crack-tip is effectively drained, for dynamic crack propagation the
pore fluid has no time to diffuse away from the crack-tip.

 

Introduction

In frictional materials as soils, rocks and sands that are infiltrated with ground water, the coupling of
deformation with diffusion can significantly affect the mechanical response. In particular, the pore fluid
interaction has been identified as a factor in fault creep and in enhancing the recovery of oil via the
hydraulic fracturing process [3, 13-16]. During mechanical loading of a poroelastic medium, the load is
carried partly by the porous soil skeleton and partly by the pore fluid. For constant loading and relatively
low permeability of the medium, the load is initially borne by the pore fluid. With progress of time, the
pore fluid pressure decreases and at the end of the consolidation process, the external loadings are borne
entirely by the solid skeleton. For slow crack growth governed by quasistatic equations the effects of
inertia can be neglected. In this case, in proximity of the crack-tip the pore pressure is vanishing small and
the material is effectively drained [14]. It follows that, the local stress fields are similar to those for a
crack in a homogeneous elastic material, except for a reduction in the amplitude due to energy dissipated
by the flux of fluid towards the crack-tip [2, 3, 4]. However, for rapid crack growth, as usually occurs in
hydraulic fracturing for energy resources exploration, the pore fluid has less time to diffuse away from the
crack-tip, leading to a completely different mechanical scenario from that predicted by the quasistatical
analyses without inertial effects. Knowledge of the stress and deformation fields near a propagating
crack-tip is of importance for the understanding of fracture mechanisms. Some effort has been made to
obtain asymptotic solutions for dynamic fracture problems in homogeneous elastic materials [1, 4, 12].
Nevertheless, the effects of inertia terms on the stress and pore pressure crack-tip fields in a poroelastic
material are almost unexplored. Therefore, for a better understanding of fracture mechanisms in elastic
fluid-saturated solids, the influence of inertia on the local crack-tip fields in the solid elastic skeleton and
in the diffusing pore fluid is investigated in this work, apparently for the first time.

In particular, an asymptotic solution is provided in closed-form expressions for the stress and velocity
fields near the tip of a crack dynamically running in elastic fluid-saturated porous solids, under Mode I
plane strain conditions. The mechanical behavior of the saturated porous medium is described by the
coupled constitutive equations derived by Biot [6-8] by using a phenomenological approach based on the
addition of inertia terms to his quasi-static theory [5]. Later, Bowen obtained similar result by using
mixture theory [9]. In the following, an isotropic Darcy’s law is used to model the diffusion process, and
both problems with permeable and impermeable crack faces are considered.

 

 

2. Governing equations

 

For each phase of the porous medium, the balance of momentum, neglecting body forces, gives:

 

 



 

where ρs, ρw, us and uw are the apparent mass densities and the displacement vectors of the solid and
fluid components, n is the porosity, ξ is a constant material parameter proportional to the inverse of the
permeability, ss denotes the partial stress in the solid phase and p the fluid pore pressure. The latter
quantities depend on the strains of the two components through the following constitutive equations:

 

 

 

where es = sym (∇ u s) and ew = sym (∇ u w). The four parameters λs, λsw, λw and µ define the elastic
material response and can be related to the Biot parameters [9, 10]. The total stress is defined as:

 

s = ss − n p I.                                      (3)

 

The equations of motion (1) in terms of displacements become:

 

 

The problem of a plane crack propagating at time-dependent speed v(t) along a rectilinear path in an
infinite medium is considered. A Cartesian coordinate system (0, x1, x2, x3) and a cylindrical co-ordinate
system (0, r, ϑ, x3) both centered at the crack-tip and moving with it towards the ϑ  = 0 direction are
considered, with the x3-axis along the straight crack front. In asymptotic analysis only the most singular
terms need to be retained. Therefore, in the material derivative the time derivative term is negligible
compared with the spatial derivative, namely

 

( )• = − v(t) ( ),1 = v(t) [( ),ϑ r−1 sin ϑ − ( ),r cos ϑ]. (5)

 

Note that if the stress in the solid skeleton is singular such that ss = O(r γ) as r tends to zero (γ < 0), then

asymptotically div ss = O(rγ −1) and the constitutive relation (21) implies that es = O(r γ). Therefore, it

follows that us = O(r γ +1), s = O(r γ) and s = O(r γ −1). In order to satisfy the equation (22) at lowest

order, at least one of the conditions p = O(r γ) or ew = O(r γ) must be met. Let us assume the latter as true,



then uw = O(r γ +1), w = O(r γ) and w = O(r γ −1), so that by (12) it follows ∇ p = O(r γ −1) and thus the
former condition hold true also. Moreover, it is worth noting that the terms in (1) and (4) containing the
velocities s and w give higher order contribution, and disappear in the analysis of the leading-order
problem. These terms derive from the Darcy’s law, and the circumstance that they asymptotically vanishes
means that for rapid dynamic crack propagation the diffusion of the pore fluid does not play a role at the
crack-tip.

 

 

Figure 1
Cartesian and cylindrical
co-ordinate systems centered
at the moving crack-tip.

For a plane problem, the in-plane displacement vectors can be expressed through the Green-Lamé
decomposition, by introducing the longitudinal and shear displacement potentials for the solid φ (x1, x2, t)
and ψ (x1, x2, t), and a single longitudinal displacement potential ϕ (x1, x2, t), for the fluid, namely

 

us = ∇ φ + ∇ ψ × e3, uw = ∇ ϕ , (6)

                  

 

since the displacement vector of the fluid must be irrotational. A substitution of (6) into the equations of
motion (4), by using the material derivative rule (51) and after a successive rearrangement, allows to
reduce the problem to the following system of three second order PDEs in the unknown displacement
potentials:

 

where

 



a = [(2 + Ls) (Lw – Mw
2) − Lsw

2] / δ, b = (Lsw Mw
2) / δ,    (8)

d = [(2 + Ls – Ms
2) Lw − Lsw

2] / δ, c = (Lsw Ms
2) / δ,

together with the following definitions:

 

Ls = λs
 / µ, Lw = λw / µ, Lsw = λsw

 / µ,                       (9)

Ms
2 = ρs v

 2 / µ, Mw
2 = ρw v 2 / µ, δ = (2 + Ls – Ms

2) (Lw – Mw
2) − Lsw

2.

 

It is worth noting that the equations (71), involving the longitudinal potentials φ and ϕ , are coupled. This
circumstance corresponds to the explicit coupling between the dilatation of the elastic solid skeleton and
the pressure p in the diffusing pore fluid. On the contrary, equation (72), involving the shear potential ψ
for the displacement of the solid phase, is uncoupled. The same equation holds for the homogeneous
problem, which has been solved by Achenbach and Bazant [1]. In order to uncouple the problem in the
longitudinal potentials the matrix in (71) must be diagonalized. The characteristic equation provides two
distinct positive eigenvalues, namely:

 

 

and thus the system (71) can be transformed to the following uncoupled two second-order PDEs:

 

 

 

which are formally similar to (72).

3. Asymptotic crack-tip fields

 

A separated variables representation of the spatial and time dependence of the displacement potentials in
proximity of the crack-tip is then introduced, as common in plane elastodynamic problems for moving
cracks through elastic solids [1, 11, 12], namely:

 



φ (r, ϑ, t) = r γ+2 U(ϑ) T(t), ϕ (r, ϑ, t) = r γ+2 V(ϑ) T(t), ψ (r, ϑ, t) = r γ+2 W(ϑ) T(t). (12)

 

The functions hi can be correspondingly assumed in the separated variables form:

 

 

in agreement with (112). The introduction of the potentials (12) into the relations (6) results in the
following cylindrical components of the displacements in the solid and in the fluid phases:

 

 

where = u / [r γ+1 T(t)]. A similar substitution into the constitutive relations (2) and (3), after some
lengthy but straightforward manipulations, yields the following cylindrical components of the total stress:

 

 

and to the following expression of the pore pressure:

 

 = − {Lw [V ′ ′ + (γ + 2)2 V] + Lsw [U′ ′ + (γ + 2)2 U]}/ n,                                                          (16)

 

where

After the imposition of the Mode I symmetry conditions uϑ
s = uϑ

w = σrϑ = p,ϑ = 0 at ϑ = 0 and vanishing
of the tractions on the crack faces σϑϑ = σrϑ = 0 at ϑ = π, the value γ = −1/2 is obtained, as the smallest



value of the singularity allowing the strain energy density to be integrable in a neighborhood of the
crack-tip. It must be observed that this result holds when the crack-tip velocity is subsonic and smaller
than the Rayleigh wave velocity, in agreement with the crack-tip field singularity in a homogeneous
elastic material [1, 12].

The introduction of the separated variables representation (123) and (13) for the functions ψ and hi into
the uncoupled second order PDEs system formed by (72) and (111) leads to the following results for the
unknown angular functions W(ϑ) and Hi(ϑ):

 

 

where K0, Ki, C0 and Ci (i = 1, 2) are constants of integration and:

 

 

The Mode I boundary conditions at ϑ = 0 imply that K0 = C1 = C2 = 0, and thus the following closed
form expressions for the angular functions introduced in (12) can be found from (132) and (17):

In particular, the vanishing of shear stress σrϑ ahead of the crack-tip at ϑ = 0, which holds for Mode I
loading condition, implies:

 

 

Therefore, no more than two of the three constants C0, K1 and K2 are arbitrary. In particular, for



permeable crack flanks the condition p = 0 at ϑ = π is always satisfied without any additional constraint,
and thus the total stress and pore pressure asymptotic fields are defined within two arbitrary constants.
Differently, for impermeable crack faces an additional relation holds between the constants K1 and K2,
consequent to the condition of vanishing pore fluid flux through the crack flanks p,ϑ = 0 at ϑ = π, namely:

 

where l = d + c λsw
 / λw, and thus, the stress and pore pressure fields are determined within an arbitrary

constant only, in agreement with the results of the asymptotic analysis for quasistatic crack growth in
poroelastic materials [3].

 

 

Results and conclusions

The obtained analytical results (153,4) and (16) for the total stress components ϑϑ, rϑ and for the pore

pressure  have been graphically represented in Fig. 2. The cylindrical components of the solid and fluid
displacements (14) have been reported in Fig. 3. These results refer to a crack dynamically propagating in
a fluid saturated Berea sandstone, characterized by the following material parameters: Ls = 1.53, Lw =

0.082, Lsw = 0.244, n = 0.19, ρs /ρw = 2.5, for Mw
2 = 0.02 and thus Ms

2 = Mw
2 ρs /ρw = 0.05. The case of

impermeable crack faces is considered, so that the local crack-tip fields are defined within an arbitrary
amplitude constant. The normalization condition ϑϑ = 1 at ϑ = 0 is assumed. The solution reveals that
the singular term of the pore pressure vanishes at ϑ = π, for both conditions of permeable and
impermeable crack faces, in agreement with the circumstance that only a finite value of the pore pressure
can physically be applied to the crack surfaces by hydraulic fracturing process. In Figs. 4 and 5 the total
stress, pore pressure and displacement crack-tip fields are reported for a higher value of the crack-tip

velocity, corresponding to Mw
2 = 0.04 and Ms

2 = 0.10, in the same fluid saturated Berea sandstone. From
Fig. 3, it may be observed that at the increasing of the crack-tip velocity the level of the pore pressure
becomes more pronounced with respect to the total stress. The results recover the case of dynamic crack
propagation in homogeneous elastic materials for ρw = λsw = 0, and thus Mw = b = c = 0, α1 = d = 1 and
α2 = a, so that V = 0 and the stress fields in the solid skeleton coincide with those obtained by Achenbach
and Bazant [1].

Finally, it must be remarked that the obtained solution reveals a significant change of the pore pressure
contribution, with respect to the quasistatical problem without the effects of inertia. In the latter case,
particularly, the pore pressure vanishes in proximity of the crack-tip, where the material is effectively
drained and behaves in a softer manner [3]. Conversely, for rapid dynamic crack propagation, the pore
pressure displays the same square root singularity as the stress in the solid skeleton.

 



Figure 2
Angular variation of pore pressure p and total
stress components σϑϑ and σrϑ near the crack-tip,
under Mode I plane strain loading conditions.

Figure 3

Angular variation of displacements of the solid us

and the fluid uw phases near the crack-tip, under
Mode I plane strain loading conditions.

Figure 4

As Figure 2 except that Mw
2 = 0.04 and Ms

2 =
0.10.

Figure 5

As Figure 3 except that Mw
2 = 0.04 and Ms

2 =
0.10.
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