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Sommario

Viene presentata una soluzione analitica dei caaspitotici di tensione e deformazione in prossimita
dell'apice di una frattura che si propaga rapidammém un materiale poroelastico saturo, in condizai
Modo I. Si assume che il comportamento del matesa descritto dalla teoria di Biot della porogtais

in presenza di effetti dinamici. L’approccio segugrevede la trasformazione delle equazioni delomot
espresse in termini di potenziali di spostamenmtayn sistema disaccoppiato del secondo ordineyidi ¢
viene fornita una soluzione a variabili separat@jda localmente in prossimita dell'apice. | rigtit
ottenuti mostrano che la pressione del fluido iospimita dell’apice presenta la stessa singoldetéa
tensione nel materiale della fase solida. A difieeedel caso quasistatico in cui I'apice dellattrat € in
condizioni drenate, per propagazione dinamica dig#tura il fluido interstiziale non ha il tempo
necessario per defluire lontano dall’apice.

Abstract

A closed-form asymptotic solution is provided fog stress, pore pressure and displacement fields ne
the tip of a Mode | crack, dynamically running ilasic fluid-saturated porous solids. The Biot theof



poroelasticity with inertia forces is assumed tovgm the motion of the medium. The equations of
motion, in terms of displacement potentials, hasnbeduced into a second order uncoupled system and
solved under a scheme of separated variables. bteened asymptotic solution reveals the pore pressu
near the crack-tip displays the same square raajudarity as the stress in the solid skeleton.ddéhtly
from the quasistatic case, where the crack-tipfisaively drained, for dynamic crack propagatidre t
pore fluid has no time to diffuse away from theckrtip.

Introduction

In frictional materials as soils, rocks and sarfus tare infiltrated with ground water, the coupliofy
deformation with diffusion can significantly affettie mechanical response. In particular, the ploid f
interaction has been identified as a factor intfaséep and in enhancing the recovery of oil via th
hydraulic fracturing process [3, 13-16]. During rnaxical loading of a poroelastic medium, the load i
carried partly by the porous soil skeleton andlpdny the pore fluid. For constant loading and tigkly

low permeability of the medium, the load is inityaborne by the pore fluid. With progress of tintleg
pore fluid pressure decreases and at the end afoifeolidation process, the external loadings arad
entirely by the solid skeleton. For slow crack giiowoverned by quasistatic equations the effects of
inertia can be neglected. In this case, in proximitthe crack-tip the pore pressure is vanishimglsand

the material is effectively drained [14]. It follewthat, the local stress fields are similar to ¢htiw a
crack in a homogeneous elastic material, excepa f@duction in the amplitude due to energy dissgba
by the flux of fluid towards the crack-tip [2, 3. However, for rapid crack growth, as usually ascin
hydraulic fracturing for energy resources explamatithe pore fluid has less time to diffuse awayrfithe
crack-tip, leading to a completely different medbahscenario from that predicted by the quasisahti
analyses without inertial effects. Knowledge of steess and deformation fields near a propagating
crack-tip is of importance for the understandingratture mechanisms. Some effort has been made to
obtain asymptotic solutions for dynamic fracturelpems in homogeneous elastic materials [1, 4, 12].
Nevertheless, the effects of inertia terms on thess and pore pressure crack-tip fields in a pastie
material are almost unexplored. Therefore, for tebainderstanding of fracture mechanisms in elasti
fluid-saturated solids, the influence of inertiatbe local crack-tip fields in the solid elasticckion and

in the diffusing pore fluid is investigated in thi®rk, apparently for the first time.

In particular, an asymptotic solution is provideddosed-form expressions for the stress and ugloci
fields near the tip of a crack dynamically runningelastic fluid-saturated porous solids, under ®ad
plane strain conditions. The mechanical behaviothef saturated porous medium is described by the
coupled constitutive equations derived by Biot [@&8 using a phenomenological approach based on the
addition of inertia terms to his quasi-static the{]. Later, Bowen obtained similar result by wgin
mixture theory [9]. In the following, an isotropiRarcy’s law is used to model the diffusion process]

both problems with permeable and impermeable dieazks are considered.

2. Governing equations

For each phase of the porous medium, the balane®wfentum, neglecting body forces, gives:

divo,= p i, +E(0,-1,) nWptpiiL=El,. -0, 9y



whereps, pw, Us anduy are the apparent mass densities and the displatesetors of the solid and
fluid componentsn is the porosityg, is a constant material parameter proportionah®ihverse of the
permeability, § denotes the partial stress in the solid phasepatite fluid pore pressure. The latter
guantities depend on the strains of the two comisnrough the following constitutive equations:

GSZZJ-L Es+(ﬂ“srr55+ﬁ*swrraw)1= _szﬁ“swrrgs-i_ﬁﬂ—urrawp (2)

where ¢ = sym(LJ u g) and g, = sym(0J u w). The four parameterss, Asw, Aw andp define the elastic
material response and can be related to the Branpeters [9, 10]. The total stress is defined as:

s=g-npl. 3)

The equations of motion (1) in terms of displacetadé®come:

pAm A+t A) Vdvw, + A, Vdiva, =p.ii +& @, —ua,),
(4)
PI"-SH' ?&?I'V “5+;J'ﬂ‘uvd3.v“w=pwﬁw_§ (ﬁs_ﬁw).

The problem of a plane crack propagating at tinmgeddent speetl(t) along a rectilinear path in an
infinite medium is considered. A Cartesian coortBnsystem (0, ¥ x2, x3) and a cylindrical co-ordinate

system (0, rg, x3) both centered at the crack-tip and moving witkowards thed = 0 direction are
considered, with theaxaxis along the straight crack front. In asymptatralysis only the most singular

terms need to be retained. Therefore, in the natderivative the time derivative term is negligibl
compared with the spatial derivative, namely

(O ==v® O),2=v) [().9 r Lsing - ()rcosd]. (5)

Note that if the stress in the solid skeleton igslar such thatsss O(rY) as r tends to zery € 0), then
asymptoticallydiv ss = O( _1) and the constitutive relation {Rimplies that e = O(r ¥). Therefore, it
follows thatus= O(r¥Y ™), 4s= O(r¥) andiis= O(rY 1. In order to satisfy the equationpj2at lowest
order, at least one of the conditigns O(rY) or ey = O(r¥) must be met. Let us assume the latter as true,



thenuw = O(rY 1), 4, = 0¥y andiiy = O(rY ™Y, so that by (4) it follows O p = O(r¥ 1) and thus the
former condition hold true also. Moreover, it isrttonoting that the terms in (1) and (4) containihg
velocities U and Wy give higher order contribution, and disappearhi@ &nalysis of the leading-order

problem. These terms derive from the Darcy’s lawd the circumstance that they asymptotically vagssh
means that for rapid dynamic crack propagationdiffasion of the pore fluid does not play a roletlad
crack-tip.

crack tip X

Figure 1

Cartesian and cylindrical
co-ordinate systems centered
at the moving crack-tip.

For a plane problem, the in-plane displacementovectan be expressed through the Green-Lamé
decomposition, by introducing the longitudinal amar displacement potentials for the sgliet1, x2, t)

andy (x1, x2, t), and a single longitudinal displacement potentié1, x2, t), for the fluid, namely

since the displacement vector of the fluid mustriagational. A substitution of (6) into the equais of
motion (4), by using the material derivative rufg)(and after a successive rearrangement, allows to

reduce the problem to the following system of thseeond order PDEs in the unknown displacement
potentials:
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where



a=[(2 +Lg (Lw—Mw?) ~ Lsw?] / 3, b= (LswMw?) /3, (8)

d=[(2+ I—S—MSZ) Lw - stz] 19, ¢c=(Lsw Msz) /9,

together with the following definitions:

Ls=As/ |, Lw =Aw/ H, Lsw=Asw/ W, 9

Mg = psV2/ H, Muw? =PWV2/ H,0=(2 +|—s—|\/|52) (LW—MWZ) ~ Lsw?.

It is worth noting that the equationsif/involving the longitudinal potentialgand¢ , are coupled. This
circumstance corresponds to the explicit coupliatyeen the dilatation of the elastic solid skeletod
the pressur@ in the diffusing pore fluid. On the contrary, etjoa (72), involving the shear potentigl

for the displacement of the solid phase, is uncaiipThe same equation holds for the homogeneous
problem, which has been solved by Achenbach an@mid4]. In order to uncouple the problem in the
longitudinal potentials the matrix in {y must be diagonalized. The characteristic equatiavides two

distinct positive eigenvalues, namely:

and thus the system1(j7can be transformed to the following uncoupled s&oond-order PDEs:

a— d -
g toehn=0,0=1, 2, where: |:¢:| £= |: ™ Oiz:| |:kl:| (11
P ¢ < "
which are formally similar to @j.

3. Asymptotic crack-tip fields

A separated variables representation of the spatidltime dependence of the displacement potemtials
proximity of the crack-tip is then introduced, asmamon in plane elastodynamic problems for moving
cracks through elastic solids [1, 11, 12], namely:



o9, 0 =Y 2U@) TE, ¢ (9, 1) = 12 V(9) TO), w (r, 9, ) = r Y2 W(9) T(). (12)

The functiondhj can be correspondingly assumed in the separatebies form:

T i ) L cf—Oﬂl Ef—ﬂiz Hl
by, % 5= H(B Tip, WARE Ly - . H, | (13)

in agreement with (. The introduction of the potentials (12) into theations (6) results in the
following cylindrical components of the displacertseim the solid and in the fluid phases:

SWHEEDY, TS oD W,
i

(14
=(y+3dV,

u/t
" g =V,

where®=u / [r y+l T(t)]. A similar substitution into the constitutivelagons (2) and (3), after some

lengthy but straightforward manipulations, yielte following cylindrical components of the totalests:

T = (Lot Do) U+ v+ 2P U]+ (Lt L) [V (p+ DTV,
O, =20+D[W+y+ DU +0 .,

(L3
& =2[UCH G DT -+ WS o,

G =2O+DUTW+yG+DW,
and to the following expression of the pore pressur
P = {Lw[V' +(y+ 2P VI + Lew[U" +(y+ 2P UlY n, (16)
where

B =0 /[ Te] md F=pf[ur' TE).

After the imposition of the Mode | symmetry condits ° = ug"V = org = p.g =0 atd = 0 and vanishing
of the tractions on the crack facegg = org = 0 atd =11, the valuey = —1/2 is obtained, as the smallest



value of the singularity allowing the strain enermgnsity to be integrable in a neighborhood of the
crack-tip. It must be observed that this resulideoihen the crack-tip velocity is subsonic and &mal

than the Rayleigh wave velocity, in agreement with crack-tip field singularity in a homogeneous
elastic material [1, 12].

The introduction of the separated variables reptasien (13) and (13) for the functiong andh; into
the uncoupled second order PDEs system formed )ya(d (11) leads to the following results for the
unknown angular functions W) and H(J):

VWS = Ko [2 cos $- gl B] JEn 8+ cos B + CL[2 cos S+ g4 5] ﬁfgn(aj—cas&

H (% =K [2cos $-g(H] /S (H+co5F +C 2 cos S+g(H) g (B —cosd

(17

where K, Kij, Cp and G (i = 1, 2) are constants of integration and:

sint &

(%= | cos* B+ et =af 1-M2 sins (1)

The Mode | boundary conditions &t= 0 imply that K = C1 = C = 0, and thus the following closed
form expressions for the angular functions intreatl (12) can be found from (9)3and (17):

2 2

U = 2 (d — oy Hi (), Vid=c 2 Hii 3, (1%
1=1 i=1

TS = Co [2 cos S+ g ] 80 (B—cosd (20)

whete:

Ho(8h = KL [2 cos &—g@ﬂm, -

In particular, the vanishing of shear stresg ahead of the crack-tip at = 0, which holds for Mode |
loading condition, implies:

2[(foy —drafo Kot afog —diJos VK] -2 - HC= 0. (22

Therefore, no more than two of the three const&usKi1 and Ky are arbitrary. In particular, for



permeable crack flanks the conditipr= 0 atd = 1tis always satisfied without any additional consitra
and thus the total stress and pore pressure astimpédds are defined within two arbitrary congisn
Differently, for impermeable crack faces an addisibrelation holds between the constantsadd K,

consequent to the condition of vanishing pore fflud through the crack flanksg = 0 atd =1, namely:

%ﬁ (= O log=1) Ey+g ﬁ(%—f) (o= 1) K3=10, (23]

wherel =d + ¢ Asw/ Aw, and thus, the stress and pore pressure fielddeseemined within an arbitrary

constant only, in agreement with the results of degmptotic analysis for quasistatic crack growth i
poroelastic materials [3].

Results and conclusions

The obtained analytical results gL and (16) for the total stress componed &9, @ rg and for the pore

pressureﬁT have been graphically represented in Fig. 2. Madrical components of the solid and fluid
displacements (14) have been reported in Fig. 8s&mesults refer to a crack dynamically propagatin
a fluid saturated Berea sandstone, characterizetthéoyollowing material parametersg = 1.53,Ly =

0.082,Lsw= 0.244 = 0.19,ps/pw = 2.5, forMy? = 0.02 and thuds? = My? ps/pw = 0.05. The case of
impermeable crack faces is considered, so thatota crack-tip fields are defined within an arary
amplitude constant. The normalization condit? gg = 1 atd = 0 is assumed. The solution reveals that
the singular term of the pore pressure vanishe$ at 1 for both conditions of permeable and
impermeable crack faces, in agreement with theaigistance that only a finite value of the pore press
can physically be applied to the crack surfacesyaraulic fracturing process. In Figs. 4 and 5tittal
stress, pore pressure and displacement cracketigsfiare reported for a higher value of the crgck-t

velocity, corresponding tMW2 =0.04 and\/ls2 = 0.10, in the same fluid saturated Berea sandstemom
Fig. 3, it may be observed that at the increasinth® crack-tip velocity the level of the pore mese
becomes more pronounced with respect to the tbtdss The results recover the case of dynamidkcrac
propagation in homogeneous elastic materialpfpr Asw= 0, and thudlyw=b=c=0,a1 =d=1 and

02 =4a, so that V = 0 and the stress fields in the sslieleton coincide with those obtained by Achenbach
and Bazant [1].

Finally, it must be remarked that the obtained smfureveals a significant change of the pore pness
contribution, with respect to the quasistaticalbppean without the effects of inertia. In the latt=se,
particularly, the pore pressure vanishes in prayirof the crack-tip, where the material is effeetw
drained and behaves in a softer manner [3]. Coaler®or rapid dynamic crack propagation, the pore
pressure displays the same square root singuéitige stress in the solid skeleton.
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