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Sommario

Viene ricavata una soluzione asintotica dei canmpemisione e della pressione interstiziale in groga
dell’apice di una frattura che si propaga in unamate elastoplastico poroso saturo. In particolaiene
analizzato il problema piano di deformazione indimioni quasistatiche di Modo I, sia per supertci
frattura permeabili che impermeabili. Il modellostitutivo considerato si basa sulla condizione di
snervamento di Drucker-Prager in termini di sfoefbicace, con legge di flusso associata e non, per
incrudimento lineare ed isotropo.

Abstract

An asymptotic solution is obtained for stress andeppressure fields near the tip of a crack, stbadi
running in elastic-plastic fluid-saturated porouslids. Reference is made to the case of quaskstati
crack growth under plane strain and Mode | loadiognditions. In particular, the effective stress is
assumed to obey the Drucker-Prager yield conditwith associative or non-associative flow-rule,
displaying linear isotropic hardening. Both condiis of permeable and impermeable crack faces are
considered.

1. Introduction

Fracture initiation and growth in porous, fluid watted rocks is an important issue in a class of
geophysical problems. These are characterized byinteraction between the pore fluid and the
volumetric elastic and inelastic deformation of s#udid skeleton and are believed to be importarfi&irit
creep and in the propagation of hydraulic fractyifior oil resources exploration [1, 9-11]. Implicats of
inelastic deformation in the mechanics of crackwghoin elastic-plastic porous and fluid-saturated
materials may be relevant in view of the extensitigzation of hydraulic fracturing process.

The analysis of steady-state crack propagationbeas systematically investigated by the authors for
inelastic constitutive behaviors with pressure-gemsyield conditions [2], non-associative flowaa [6],

and porosity [7, 8]. However, for a better underdtag of fracture mechanisms in elastic-plastic
fluid-saturated solids, the effect of the couplingfween the volumetric dilatation of the elastiasgpic
skeleton, and the pressure in diffusing pore flafthuld be investigated in the proximity of thecgrép.



In the present article, an asymptotic solutionre/med for stress and pore pressure fields neatiphof a
crack, steadily running in elastic-plastic fluidig@ted porous solids, under Mode | plane strain
conditions. Both conditions of permeable and impsahte crack faces are considered. The mechanical
behavior of the saturated porous medium is destnifseng coupled constitutive equations developed on
the basis of the theory of mixtures [5]. In parlécu when compressible, the fluid constituent has a
reversible behavior, while the fluid phase has mbe solid phase is assumed to obey the DruckeyePra
yield condition with associative or volumetric-nassociative flow rule, displaying linear isotropic
hardening. The Darcy’s law is used to model thelflliffusion process. The results show that thdieip
coupling between plastic dilatancy and fluid consgibility results in a peculiar behavior of the gor
pressure near the crack-tip. Moreover, the flufliutl together with plasticity effects may dissipahe
amount of supplied energy, leading to a reductiaih® energy available to fracture the material.

2. Constitutive equations

The adopted constitutive model refers to the elgdaistic model for saturated porous media proptsed
Loret and Harireche [5]. Within the context of shd@formations incremental theory, the total straite

£ is the sum of elasti® € and plastic? P parts. Similarly, the rate of the variation ofifllcontent per unit

volume ¢ is the sum of elastlfe and melastlcfp contributions. Both elastic terms are relatedh® t
stress and pore pressure reéend P through the elastic incremental relation [1, 3, 4]
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where E is the elastic Young modules= 3 ¢y —Vv) / B (1 — 2v) (1 +vy) is the Biot coefficient of
effective stress (O &< 1), =3a (1 +v) (1 —2vy) / B (1 +vy), with v andvy denoting the drained and

undrained Poisson ratios and B the Skempton’s pogesure coefficient [1]. The Darcy's law and the
mass continuity equation are

qg=-pok Op, pof =-diva, (3)

where g is the mass fluxk is the permeability coefficient and the referemsmnsity po is assumed
constant.

Drucker-Prager yield condition is assumed in teofihe effective stress*= o +apl:

— £
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where J3(c*) = | devo* |2 / 2 is the second invariant of the deviatoric effee stressk is an internal

variable governing the isotropic hardening behawaodu is the pressure-sensitivity factor, which defines
the influence of the hydrostatic stress on thedyebcess.

Let Q and¢$ denote the derivative of the yield function (4twiespect to the effective stress tensbr
and to the pore pressyserespectively:
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The evolution laws for the inelastic internal vate allow for non-associative flow-rule and linear
isotropic hardening behavior, namely:

& =AP, {P=A@ E=AH, 6)

where A is the (non negative) plastic multiplier, H is thardening modulus, assumed to be strictly
positive and constant for linear isotropic hardgrtsehavior, and:
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wheref} is the plastic dilatancy parameter, governingvlemetric plastic-flow. Note that fd@¢ =, the
evolution laws (6) become associative. MoreovearHe=n G / (1 - n), wheren = G/ G is the ratio
between plastic and elastic shear moduli of theeriadt In the following, the dimensionless hardenin
modulus is denoted with=H / E.

The consitency conditiof(o*, k) = 0 together with (5) and gpallow us to obtain the value of the plastic
multiplier A :

A=H1(Q-8*)y=H1(Q-t+au?).(8)

It should be remarked that plastic flow occurs wtenstress point lies on the yield surface (4) @ncé
* > 0, whereas elastic unloading occurs wi@n 5* < 0. Finally, the elastic-plastic incremental
constitutive equations relating the stress #ate the total strain rait, can be written in the form:
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Equations (9)-(10) hold when the stress statefetithe yield condition (4). Otherwise, the incesrtal
constitutive relationship reduces to the poroatdsthavior, obtained fax = 0.

3. Crack propagation problem

The problem of a plane crack propagating at constalocity ¢ along a rectilinear path in an infinite
medium is considered. The mechanical behavior ef iaterial is described by the incremental
elastic-plastic constitutive model presented inti®ac2. This framework allows us to consider the
possibility of elastic unloading sectors, which nagpear in the proximity of the crack-tip, duringuak
propagation. A cylindrical co-ordinate system &) €9 , e3) moving with the crack-tip towards ti¥e = 0
direction is considered, with thegsaxis along the straight crack front. The steadyestondition yields
the following time derivative rule, for any scalaectors or second order tengar

A=c (r_lA,a sind —A rcosd), (11)

where r, and are the polar coordinates in the plane orthogtmntde »-axis.



The quasi-static equilibrium equations and the kiagc compatibility conditions between strain ratesl
velocities are:

.1
divo=0,¢ =2(@v+0v"). (12)
In addition to equation (12 the plane strain conditicE33= v3 = 0 must be considered.

Constitutive equations (9)-(10) together with qesakic equilibrium and kinematic compatibility
conditions (12), form a system of first order PDisch governs the problem of the crack propagation.
The solution is sought in a separated variable®,ftay considering single term asymptotic expansufns

near crack-tip fields. To this purpose, note th#té order of the stress singularityds= O(F) as r tends
to zero, then the constitutive relation (10) implteat at least one of the conditigns O(r°) or = O(r°)
must be met. Let us assume the validity of the &rrit follows thatd p = O(F° _1). In this case, the
Darcy’s law (3) also implies that; = O 1), thusdiv g = O ~9), and finally the mass continuity
equation (3) yields ¢ = O _2), but this result is not compatible with the casive equation (10),
being £ = O ™Y) and & = 0(° ~1). Therefore, only the conditioh= O(r) must be considered. In this

case, the time derivative rule (11) gi\gfs; o _1) and thus the mass continuity equatiop) (Bpliesq

= O(P) so that the Darcy’s law {3 is satisfied if and only ip = O(rs+1). As a conclusion, the pore

pressure does not display a singularity at theketipcfor —0.5< s < 0 but tends to vanish as r approaches
zero. This condition agrees with the results olsdifor quasi-static crack propagation in poroetasti

materials [1], where the pore pressure behaved/aand the stress field in the solid skeleton has the
well-known square root singularity. The vanishirfglee pore pressure as r tends to zero meansdhat f
quasi-static conditions the pore fluid diffuses gvifmm the crack-tip, where the material is effeely
drained.

From the above argumentation, the following assiongor the velocity, stress, pore pressure andsmas
flux asymptotic fields can be accepted:
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q(r.9) =poc @'zw), f=v @'r(s ) k(I ) =E @'x(s ),

wheres is the exponent of the stress singularity and Rotes a characteristic dimension of the plastic
zone, which remains undetermined, since the asyopimblem is homogeneous.

By applying the derivative rule (11) to the fieldpresentations (13), the velocity of deformatiod ¢he
rates of stress and pore pressure assume the ifajj@xpressions:

. . 2 .
E(r9) = ?@D(a), 5r9)=E ?@zw ), 2r9y= « T ), (14)

where the time derivative rule (11) can be usetdkfme the angular functiorzssandrT :
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and the suffix (")denotes differentiation with respect to the argoinde

It is worth noting that asymptotically the effedistres®™* is equal to the stress since the pore pressure
gives higher order contribution. The introductidntlee asymptotic fields (13) in the yield conditi)

results inf (o*, K = E (r / R} f (T, X) + o(r®, and thus, in a neighborhood of the crack-tip yhesd
condition (4) may be equivalently written as:

i
fT =420 +3 4 1-x=0.(16)
Moreover, the yield function gradient and flow-mddasors defined in (5) and (7) reduce to:

dev T dev' T

Q=2472(D B p- 241D 3| (1)
which are independent of r.

A substitution of the asymptotic fields (13) andYInto equilibrium, compatibility conditions (12nd
constitutive relation (9) yields at the lowest atrde

1
T'eg+sTe=0,(5 Wney +woe)sym=(L+v)Z-vir £+h 1 (Q-Z)P. (18)

Note that the field equations (18) together wité yireld condition (16) and the definitions (17) rmade
with the corresponding equations governing the igstasic crack propagation in the drained
elastic-plastic material of the solid phase. Thidbpem has been previously solved for associatyand
non-associative [6] flow rule. The introduction tbe fields (13) and (14) into the Darcy’'s law ahe t
mass continuity equation (3) and in the constitutisation (10) yields at the lowest order:

zr=—-(1+9P,z3=-F,

(19)

zs9+(L+9z+a(l-2v)rz+htap@Q-3) =0,

and thus by substituting (19) into (1), one obtains:

P'+(1+9?P=a(1-2v)tr s +h1aB(Q-3). (20)

Once the stress fieldl is known from the solution of the drained probléh8), the expression of the
angular functiork andQ in (15) and (17) may be introduced into the secamidr ODESs (20), which can
be solved foP.

The symmetry of the Mode | crack propagation probimplies the vanishing of the mass flux component
zg atd = 0, and thus by (19) the conditi®h(0) = 0. Moreover, two different boundary condisomust

be introduced for permeable and impermeable cracésf respectively. In particular, for permeabéelcr
flanks the pore pressure must vanish at 1, namelyP(m) = 0, whereas for impermeable crack surfaces
the mass flux must vanish, leading to the condifofm) = O.



4. Results and conclusions

The asymptotic pore pressure field near the tipaotrack steadily running in an elastic-plastic
fluid-saturated porous solids, under Mode | plainairs conditions has been obtained, based on thétse

of the stress and velocity crack-tip fields in thhrained material of the solid phase already knayr6]. In
Figs. 1a and 1b the angular variation of the poessurep and of the mass flux componeng qre
reported, relative to the associative flow-rule &melfollowing values of the material parameters: 0.5,

v = 1/3 andn = 0.001. Note that from (19 the radial component of the mass flux is propoii to the
pore pressure, with reversed sign, and thus habew®t plotted. In particular, figs.1a and 1b reédethe
cases of permeable and impermeable crack faceseatesely. For permeable crack faces the pore
pressure is positive in a neighborhood of the ctgrkand attains its maximum value ahead of the
crack-tip (Fig. 1a). For impermeable crack faceleerease is found in the pore pressure directlgchbé
the crack-tip ford < 80° (Fig. 1b), which has the effect of weakeniing material ahead of the crack-tip
and dissipating energy. The angular variation$efdorresponding singular stress components haae be
reported in Fig.2. Since all the field equationd #ime assigned boundary conditions are of homogeneo
type, the solution may be determined within antealby amplitude constant.

20 G0
_ p=01 po=0.1
40 =
I p h=0f B=01 P
20 - o
i L -
- - hal ra
J"" __.-H N - Fa
n i If q'a '--_“- = =20 s ~ . -
— - L. 3 -
= 2 -_ *..___ q,J
|, -0 B -
et o
o PRI NI B T B R 50 SETERT B A B BT B BN E N B

] a0 &l an 120 150 g 180 0 30 14 a0 120 150 g a0




p=01 L\ :
s L < p =002 r :
o ¥
-0z s e
[ E
4 i ’
@ i
P == 09
2 b T - p=0.1
p=0
I:l:-rlllllllllllll'l" G -IIIIIJIIIIIIIIIII

-
i 30 & an 120 450 10 0 an G a0 20 a0 180

(@) (b)

In Figs. 3 the effect is shown small (a) and null (b) plastic dilatancy on thegpressure and mass flux
fields in a neighborhood of the crack tip. In thenfier case the behavior is similar to the asseeatase

of Fig.1a, except for the magnitude of the fieldsthe latter case the pore pressure in the diffyfiuid is
coupled with the elastic volumetric dilatation gnignd thus it displays a variation similar to the
poroelastic case [1]. Note also that the results dermeable crack faces coincide with those for
impermeable crack faces, since both pore pressutensass flux tend to vanish at the crack flanks,
namely ford > 130°.
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