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SOMMARIO
Si ottiene una soluzione asintotica per i campi tensionali e deformativi all’apice di una

frattura che si propaga in linea retta, a velocita costante, in condizioni di Modo I in un
mezzo elastoplastico infinito. Il modello elastoplastico adottato € una variante del model-
lo di Gurson, adatto alla descrizione del comportamento meccanico di materiali metallici
duttili porosi. La variante proposta del modello di Gurson, pur non incorporando una
legge di evoluzione della porosita, riduce la componente volumetrica del flusso plastico
rispetto al caso della legge di normalita e definisce quindi un comportamento non-asso-
ciato. Si mostra che la porosita e un fattore instabilizzante nella propagazione della frat-
tura legato, tra I’altro, alla possibilita di comparsa di discontinuita nei campi tensionali

1. INTRODUCTION

Slow crack propagation in ductile, elastoplastic materials is a topic in fracture mechanics,
which has received increasing attention in the last twenty years (Amazigo and
Hutchinson, 1977, Achenbach et al., 1981, Lam and McMeeking, 1984; Aoki et al. 1987,
Ponte Castaiieda, 1987, Ostlund and Gudmunson, 1988; Tvergaard and Needleman,
1992; Narasimhan et al, 1993; Miao and Drugan, 1995). In recent years, the authors
were successful in generalizing the asymptotic solution obtained by Ponte Castafieda
(1987) for J>-flow theory, to various elastoplastic models (Bigoni and Radi, 1993; 1996,
Radi and Bigom, 1993, 1994; 1996). In particular, a constant porosity version of the
Gurson (1977) model was analyzed in (Radi and Bigoni, 1994; 1996), for both isotropic
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and kinematic hardening. In this model, the associative flow law has been assumed. It is
however a well-established experimental fact that the associative flow law overestimates
the dilatancy due to plastic flow in practically all materials exhibiting pressure-sensitive
yielding. In particular, this is also true for porous metals, to which the Gurson model
refers (Needleman and Rice, 1978). Moreover, the non-associativity of the plastic flow is
known to be connected to a number of instabilities [shear banding (Rice, 1976), loss of
second order work positiveness (Maier and Hueckel, 1979), flutter instability (Bigoni,
1995)]. For crack propagation problems, non-associativity is related to the appearance of
discontinuity in the stress field (Drugan and Rice, 1984; Drugan, 1995). Despite of its
importance, non-associativity of the flow law was rarely investigated in asymptotic
solutions of crack problems. In particular, the only contributes are that by Nemat-Nasser
and Obata (1990), referred to a special kind of non-associativity resulting from a non-
coaxial flow rule, and that of the authors (Radi and Bigoni, 1993). The latter work is
restricted to a simple Drucker-Prager plasticity model with isotropic hardening and
shows that the flow mode tensor, rather than the yield function gradient, is the dominant
parameter in determining the asymptotic fields. Some of these results are confirmed in
the present work, were a version of Gurson model with linear hardening, constant poro-
sity, but different yield and plastic potential functions is proposed. In essence, the plastic
potential function corresponds to a yield function with different (smaller) porosity. This
simple generalization of the constant porosity version of the Gurson model employed in
(Drugan and Miao, 1992; Miao and Drugan, 1993, 1995; Radi and Bigoni, 1993; 1996)
respects the basic physical fact that dilatancy results inferior than that corresponding to
the normality rule. However, the model is, to a some extent, artificial, in the sense that a
nucleation and growth law for the porosity is not defined. On the other hand, the model
remains simple enough to allow us to obtain an asymptotic solution of the near tip fields
for mode 1 crack propagation, so that the effects related to non-associativity can be
investigated. These are found to be relevant, instabilizing with respect to crack propaga-
tion, and related to the possibility of the appearance of stress jumps in the solution.

2. MATERIAL MODEL

The simplified version of the Gurson (1977) model employed in this article is described
in this section. The model is based on the Gurson yield condition for a porous solid:

_ 3|devel’ ro

flo,0,) T+2¢cmfr[§)—(l +¢*) =0, (2.1)

m

where ¢ is the volume fraction of voids (assumed constant), o is the average macro-
scopic stress tensor and o, the isotropic hardening parameter, defines the size of the
current yield surface of the matrix material.

A non-associative plastic flow law for the macroscopic porous material is assumed

& =AP, (2.2)
where A is the (non negative) plastic multiplier and P is defined as
3 t
P=—devo +y % sirik {2’:’] I 2.3)

m m

where  €[0,1] is a non-associativity parameter, In particular, v = 1 corresponds to the
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associative flow law and w=0 to a null volumetric plastic deformation (J>-type flow). The

yield function gradient Q is therefore equal to P when y = 1.
Adopting linear hardening for the macroscopic mechanical behavior, the evolution law of

the hardening parameter can be obtained in the form

3H
6. =A—=— P.o, (2.4)
(1-9¢)ao,
where H_, is the hardening modulus of the matrix material, depending on the ratio
o, = G, /G of the current tangential modulus to the elastic shear modulus of the matrix

material:

H =-—8- G, (2.5)

l—(IG

Prager consistency must be satisfied during plastic flow, whence the expression of the
plastic multiplier may be derived:

(Q-9)

A=t L 2.6
e, 26)

where (), the Macaulay brackets, is the operator R—=>R'U{0}, VxeR, (x) = Sup{x,0},

and

TR P @7
e @9 @0, 7

is the macroscopic hardening modulus of the porous material.

If the elastic behavior is assumed isotropic, the elastoplastic incremental constitutive
equations relating the stress rate & to the velocity of deformation &, can finally be
written in the standard form:

&= ;G[er— lrv(rr a) I] + {QE'{'E') P, (2.8)

where v is the Poisson ratio.

3. ASYMPTOTIC SOLUTION OF CRACK PROPAGATION

The problem of a crack quasi-statically and rectilinearly propagating at constant velocity
¢ in an infinite medium, under mode I and plane strain conditions, is briefly exposed in
this section [for further details the interested reader is referred to (Radi and Bigoni 1993,
1996)]. The mechanical behavior of the material is described by the incremental elasto-
plastic constitutive law presented in Section 2. This framework allows incorporation of
elastic unloading sectors, which may appear in the proximity of crack-tip during crack
propagation. A cylindrical co-ordinate system (O, e, e,, e;) moving with the crack-tip in
the 9 = 0 direction is adopted, with the x3-axis along the straight crack front. The steady-
state condition yields the following time derivative rule, for any scalar, vector or second
order tensor A:
c| OA

, OA
A = ?[E.sm\'}rr T COJS] (3.1)
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where r and 9 are the polar co-ordinates in the plane orthogonal to the x3-axis. The
derivatives of a tensor A and of its components with respect to 8 are denoted by A’, and
by Aegs, respectively. The kinematic compatibility condition between strain rates and
velocities is:

E=1(Vv+ W) (3.2)

The plane strain condition €33 =0 must be considered in addition to (3.2). The quasi-
static equilibrium condition is:

dive =0. (3.3)

Compatibility (3.2), equilibrium (3.3) and the incremental constitutive eqns (2.16) and
(2.17) form a system of first order PDEs which governs the problem of crack propaga-
tion. The solution is sought in a separable-variable form, by considering single-term
asymptotic expansions of near crack-tip fields. In particular, the stress, velocity, and
current flow stress fields are assumed in the forms:

5 § 5
v(r,9) =< [LJ w(®), o(r,9)=E [i] T(9), o, 9)=E [ij T,(9), (3.4)
_ 5 \B B B
where s is the exponent of the field singularity and B denotes a characteristic dimension
of the plastic zone. Observe that s and functions w, T, and T, are the unknowns of the
problem and do not depend on the value of the crack propagation velocity ¢, since inertia
is not accounted for. Moreover, the characteristic dimension B of the plastic zone
remains undetermined, since the asymptotic problem is homogeneous. The material time
rates of the fields o and o, may be derived from representation (3.4) by using the steady-
state derivative (3.1) in the form:

Ir

&, 9)=E < [%J 29), 6,0, 9) =ES [E] 2. (9), (3.5)

where the functions £ and £, which are independent of r, may be written, using
representation (3.4), in the form:

Z=T sin8 —s5T cos$, Z,=Tn' sin8 —s Ty cosS. (3.6)

When the asymptotic fields (3.4) and their rates (3.5) are introduced into the incremental
constitutive relationships (2.16) and (2.17), a system of five scalar equations is obtained:

Z
(% w’ae3+wa6.)sm=(l+v}£—vrr£l+(QT}P, (3.15)
.Z
Ta' sin8 =5 Ty cosS + {g .T’\' | (3.16)

where h = H/E. The constitutive equations (3.15)~(3.16) are valid when the stress point
lies on the yield surface. During elastic unloading or neutral loading, the constitutive
relation (3.15) reduces to the incremental equation of linear isotropic elasticity, and
equation (3.16) becomes 6, = 0. '

System (3.15)-(3.16), together with the equilibrium equations:

T es+5Te =0, (3.17)
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result in seven first order ODEs of homogeneous type, for the seven unknowns compo-
nents of the angular functions w, T, and T,. The unknown exponent s may be deter-
mined as an eigenvalue of the problem, when a normalization condition for the solution is
considered. Since the ODEs (3.15)-(3.17) are in implicit form, some algebraic manipula-
tions are necessary in order to obtain the explicit forms. In particular, by considering the
components rr and 33 of the constitutive eqns (3.15), and using the plane strain
condition, the following system of equations may be derived:

(A+PeQn) Zn— (VA—=PrQs3) L33 = WA+ (Vh =Py Qgs) Zag— 2 Pr Qs Los,

3.18
(vh-Qy P33) Zo= U’-‘ + P33 Qa3) L33 = 2P33 Qe Zs — (v h — P33 Qss) Zss. : )

Equations (3.17) may be solved for £, and X33, when

A=(1-v) h+Py(Qut v Qs3) + P33 (Qs3+ v Qn), (3.19)

is different from zero. Note that A is always positive for associative flow rule, but may

vanish in the case of the non-associative flow law. When A#0, the first order ODEs
system (3.15)-(3.17), which governs the near-tip stress and velocity fields may be written
in the standard form:

e _{f,,(s,yts),s) if f(T,T.)=0 and Q.Z>0,
rey= f.(9,y(),s) if f(T, T.)<0 or f(T,T,)=0andQ.X<0,

where y = {w,, wg, Trs, T, Tss, T33, T,,}. When the boundary conditions, corresponding
to null tractions on crack surfaces and to T,5(0) = ws(0) = 0, are considered, system
(3.19) can be numerically integrated using a Runge-Kutta procedure in which Tgs(0) = 1
is assigned to avoid the trivial solution and s and T.(0) are tentatively assigned and
corrected to satisfy the conditions at 9 = 7.

[t is important to remark that, when A vanishes, the above procedure breaks down. The
condition A=0 corresponds to the condition of strain localization in a radial planar band
(Bigoni and Hueckel, 1990) which, in turn, coincides with the possible appearance of
moving shock waves (Brannon and Drugan, 1993) (see Fig. 1). In particular, jumps in
the stress components o33 and o, may appear, an occurrence excluded for elastoplastic
materials displaying positive hardening with associative flow law (Drugan and Rice,
1984; Drugan, 1995). Examples of stress jumps have been shown by Nemat-Nasser and
Obata (1990), but these results remain controversial (Brannon and Drugan, 1993).

(3.19)
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Fig. 1. Moving stress discontinuity at crack-tip
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4. RESULTS

Results of integration of system (3.19), when A#0, are shown in this section. Values of
the singularity (s), elastic unloading (9,) and reloading (8,) angles are reported in Tables
I and II for different values of porosity (¢) and non-associativity coefficient y. The
tables, as well as all other results, are restricted, for conciseness, to o = 0.001, v = 1/3,
¢ =0.01, and ¢ = 0.05.
The singularity coefficient s and the elastic unloading and plastic reloading angles 9, and
9, are reported in Fig. 2, as functions of . Note that the curves in Fig. 2 terminates
when A=0 has occurred.
The angular distribution of components of T, are plotted in Figs.3 and 4, for different
values of . It can be concluded that an increase in non-associativity yields:
- an increase in the strength of the singularity,
- a flatten of the curves,
- a reduction of the elastic sector in the crack wake.

Table 1. Values of s, 9;, 9, for ©=0.01

W s 9 B
1.00 -0.03224 132.885 142.724
0.80 “0.03746 133.795 140 868
0.60 -0.04394 134574 139.466
0.40 -0.05262 135339 138517
0.30 -0.05849 135769 138.262
0.20 -0.06630 136.285 138.241
0.00
- o = 0.001
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0.2
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W

T 1'J__|_|_"1"|'l 1--|—|-|—|—r'f'rrr1—|—|—r1—rr'|"r|—r'rm1-‘f-|

0.8

180

30

Table I1.Values of s, 8,, 9, for ©®=0.05

W 5 9 9,
1.00 40.02746 97471 178.510
0.90 -0.03198 99410 176937
0.80 -0.03671 102.848 174.393
0.70 0.04140 108.683 170.208
0.68 -0.04230 110,163  169.084
0.65 -0.04362 112.532 167.186

5 9,
9, I
:_“_‘———————-—._______________
1 H'I
3 9]
D= 0,01 Tl

--- ¢&=0.05 = -
_‘||1r|llr||| T r|| -rrrT'rTl—rﬂ—r‘l'--H—||
02 0.4 0.6 o8 1.0

ki

Fig. 2. Stress singularity s, elastic unloading 9, and plastic reloading

9, angles as functions of non-associativity parameter ‘V'.
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Fig 3. Stress functions for ®=0.01 and different values of non-associativity parameter V.

5. CONCLUSIONS

The asymptotic crack tip fields in steady Mode I propagation in an elastoplastic material
obeying a simplified version of the Gurson model with constant porosity, isotropic
hardening and non-associative flow law have been determined. The results show increase
in the strength of the singularity related to increase of the non-associativity. Compared to
the associative case, this should be related to an instability in crack propagation. More-
over, for high values of non-associativity, the condition of strain localization in planar,
radial bands is shown to be satisfied. This yields a break down of the numerical scheme
of integration related to ill posedness of the equations. From the physical point of view, it
is believed that discontinuous stress fields could appear even if they cannot be detected in

the present framework.
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Fig. 4. Stress functions for ©=0.05 and different values of non-associativity parameter ‘V'.
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